419 research outputs found

    Effect of metalloids on crystallization and magnetic behaviour of FeCoSiB based metallic glass

    Get PDF
    A series of amorphous iron–cobalt alloys with varying metalloid, boron and silicon contents were studied for their thermal stability and magnetic behaviour. The crystallization temperature and thermal stability increased with the silicon content. Good soft magnetic properties were observed for the materials with nominal composition, (Fe0×79Co0×21)77Si12×2B10×8. The magnetic properties were further improved by annealing

    Processing and Transmission of Information

    Get PDF
    Contains reports on five research projects

    Mechanically Induced Reactivity in Boehmite (y-AlOOH)

    Get PDF
    Boehmite (y- A100H) is widely used as a precursor material for the industrially important transition aluminas. Effect of mechanical activation on the thermal transformation of boehmite into other phases has been investigated and res-ults are presented in this paper. Boehmite samples, pre-pared from gibbsite by thermal decomposition, were mecha-nically activated (MA) up to 4 hours in a planetary mill. Thermal analysis (TG-DTA and DSC), XRD and FTIR were used as main techniques to study the transformations. X-ray diffraction patterns showed formation of no new phase. A steady decrease in peak intensities and broadening of peaks with increase in MA time indicated structural degradation. The changes in the FTIR, spectra with MA also supported this. The first endotherm in the DTA pattern, between 70 and 200°C, was found to correspond to the removal of physically adsorbed water. The peak temperature of this endotherm increased as a result of MA. Noticeable weight-loss in the temperature range 200-350°C, is associated with the condensation of equatorial A120H groups. As temperature is raised above 350°C the transition to y-A120-3-stArts with the condensation of other Al-OH groups. These two stages clearly manifested with different slopes in the TG profile, move towards a single event with increase in MA time. As a result of MA for four hours, boehmite to y-A1203 transition temperature decreased from 522°C to - 474°C. For samples which are MA for less than 1 hour, no thermal event occurred above 600 °C and up to 1200°C. Beyond 1 hour of MA, an exotherm began to emerge and evolved in to a fully developed one after 4 hours of milling. Its temperature of occurrence decreased from 1040°C for 90 min. milled sample to 1000 °C for 240 min. milled sample MA. DSC studies has been temperature at cutting stage by using an infrared based length system as shown in and put into practice

    Cornerstones of Sampling of Operator Theory

    Full text link
    This paper reviews some results on the identifiability of classes of operators whose Kohn-Nirenberg symbols are band-limited (called band-limited operators), which we refer to as sampling of operators. We trace the motivation and history of the subject back to the original work of the third-named author in the late 1950s and early 1960s, and to the innovations in spread-spectrum communications that preceded that work. We give a brief overview of the NOMAC (Noise Modulation and Correlation) and Rake receivers, which were early implementations of spread-spectrum multi-path wireless communication systems. We examine in detail the original proof of the third-named author characterizing identifiability of channels in terms of the maximum time and Doppler spread of the channel, and do the same for the subsequent generalization of that work by Bello. The mathematical limitations inherent in the proofs of Bello and the third author are removed by using mathematical tools unavailable at the time. We survey more recent advances in sampling of operators and discuss the implications of the use of periodically-weighted delta-trains as identifiers for operator classes that satisfy Bello's criterion for identifiability, leading to new insights into the theory of finite-dimensional Gabor systems. We present novel results on operator sampling in higher dimensions, and review implications and generalizations of the results to stochastic operators, MIMO systems, and operators with unknown spreading domains

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form

    Calcretes in the Thar desert: genesis, chronology and palaeoenvironment

    Get PDF
    The calcretes in the Thar desert occur in a variety of settings, including the piedmonts, sheetwash aggraded plains; and this study adds calcretes in regolith and colluvio-alluvial plains to the group of settings in which calcretes occur in the region. Field logs, morphological details and analytical data such as petrographic, cathodoluminescence and geochemical characteristics are described along with a discussion on their implications. Sand dunes and sandy plains dating to <20 ka have weakly developed calcretes. The better-developed calcrete horizons occur in piedmonts, interdunes or in areas that have sufficient groundwater. Deep sections in the region show phases of calcrete development in aeolian sand aggradation at ~150, ~100, ~60 and 27-14 ka. The extensive sheetwash plains have mature calcretes and date to mid-Pleistocene. Our studies indicate that these calcretes represent a hybrid process, where carbonate enrichment of the originally calcareous host occurred due to periodically raised groundwaters, and its differentiation into nodules occurred under subaerial environment i.e., after recession of groundwater. Deep sections also show a stack of discrete calcretes that developed in individual aggradation episodes with hiatuses as indicated by ESR dating results. Nodules display a multiplicity of carbonate precipi tation events and internal reorganization of calcitic groundmass. The process is accompanied by degradation and transformation of unstable minerals, particularly clays and with a neosynthesis of palygorskite. The ancient calcretes are dated from the beginning of the Quaternary to ~600 ka and show more evolved morphologies marked by brecciation, dissolution, laminar growth on brecciated surfaces, pisolites and several generations of re-cementation. Mica/chlorite schists and such other rocks are particularly vulnerable to replacement by carbonate. In an extreme case, replacement of quartzose sandstone was observed also. The presence of stretches of alluvio-colluvial plains in an area presently devoid of drainage bespeaks of occasional high-energy fluvial regime, under a semi-arid climate. The mid-Pleistocene period saw a shift towards more arid climate and this facilitated sheetwash aggradation. Finally, during the late Pleistocene, aggradation of aeolian sands indicated a progressively drier climate. However, this does not find its reflection in stable isotope data. The amount of carbonate in the form of calcretes is substantial. The present studies indicate that aeolian dust or rainwater are minor contributors to the carbonate budget. A more important source was provided by the pre-existing calcretes in the sheetwash aggraded plains and detrital carbonate in the aeolian sediments. The original source of carbonate in the region, however, remains unresolved and will need further investigations. Electron spin resonance protocols for the dating of calcretes were developed as a part of this study and the results accorded well with geological reasoning

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Array algorithms for H^2 and H^∞ estimation

    Get PDF
    Currently, the preferred method for implementing H^2 estimation algorithms is what is called the array form, and includes two main families: square-root array algorithms, that are typically more stable than conventional ones, and fast array algorithms, which, when the system is time-invariant, typically offer an order of magnitude reduction in the computational effort. Using our recent observation that H^∞ filtering coincides with Kalman filtering in Krein space, in this chapter we develop array algorithms for H^∞ filtering. These can be regarded as natural generalizations of their H^2 counterparts, and involve propagating the indefinite square roots of the quantities of interest. The H^∞ square-root and fast array algorithms both have the interesting feature that one does not need to explicitly check for the positivity conditions required for the existence of H^∞ filters. These conditions are built into the algorithms themselves so that an H^∞ estimator of the desired level exists if, and only if, the algorithms can be executed. However, since H^∞ square-root algorithms predominantly use J-unitary transformations, rather than the unitary transformations required in the H^2 case, further investigation is needed to determine the numerical behavior of such algorithms

    BLUE, BLUP and the Kalman filter: some new results

    Get PDF
    In this contribution, we extend ‘Kalman-filter’ theory by introducing a new BLUE–BLUP recursion of the partitioned measurement and dynamic models. Instead of working with known state-vector means, we relax the model and assume these means to be unknown. The recursive BLUP is derived from first principles, in which a prominent role is played by the model’s misclosures. As a consequence of the mean state-vector relaxing assumption, the recursion does away with the usual need of having to specify the initial state-vector variance matrix. Next to the recursive BLUP, we introduce, for the same model, the recursive BLUE. This extension is another consequence of assuming the state-vector means unknown. In the standard Kalman filter set-up with known state-vector means, such difference between estimation and prediction does not occur. It is shown how the two intertwined recursions can be combined into one general BLUE–BLUP recursion, the outputs of which produce for every epoch, in parallel, the BLUP for the random state-vector and the BLUE for the mean of the state-vector
    • …
    corecore