150 research outputs found

    Auto-Encoding Scene Graphs for Image Captioning

    Full text link
    We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoder-decoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation `person on bike', it is natural to replace `on' with `ride' and infer `person riding bike on a road' even the `road' is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph --- a directed graph (G\mathcal{G}) where an object node is connected by adjective nodes and relationship nodes --- to represent the complex structural layout of both image (I\mathcal{I}) and sentence (S\mathcal{S}). In the textual domain, we use SGAE to learn a dictionary (D\mathcal{D}) that helps to reconstruct sentences in the SGDS\mathcal{S}\rightarrow \mathcal{G} \rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline, where D\mathcal{D} encodes the desired language prior; in the vision-language domain, we use the shared D\mathcal{D} to guide the encoder-decoder in the IGDS\mathcal{I}\rightarrow \mathcal{G}\rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-the-art 127.8127.8 CIDEr-D on the Karpathy split, and a competitive 125.5125.5 CIDEr-D (c40) on the official server even compared to other ensemble models

    Chinese scientific drilling №1 well diamonds coring bit technology

    Get PDF
    Показана комплексная буровая технология с применением винтового двигателя, гидроударника и колонкового бурения алмазной импрегнированной коронкой, при бурении высоковольтных метаморфизованных пород скважины № 1 глубиной 5000 м в КНР. Разработаны оптимальные конструкции коронок и матрицы для предотвращения влияния ударной силы на алмазную коронку. Бурение в твердых породах с использованием разработаной технологии дало позитивные результаты

    Picosecond Switching of Optomagnetic Tunnel Junctions

    Get PDF
    Perpendicular magnetic tunnel junctions are one of the building blocks for spintronic memories, which allow fast nonvolatile data access, offering substantial potentials to revolutionize the mainstream computing architecture. However, conventional switching mechanisms of such devices are fundamentally hindered by spin polarized currents4, either spin transfer torque or spin orbit torque with spin precession time limitation and excessive power dissipation. These physical constraints significantly stimulate the advancement of modern spintronics. Here, we report an optomagnetic tunnel junction using a spintronic-photonic combination. This composite device incorporates an all-optically switchable Co/Gd bilayer coupled to a CoFeB/MgO-based perpendicular magnetic tunnel junction by the Ruderman-Kittel-Kasuya-Yosida interaction. A picosecond all-optical operation of the optomagnetic tunnel junction is explicitly confirmed by time-resolved measurements. Moreover, the device shows a considerable tunnel magnetoresistance and thermal stability. This proof-of-concept device represents an essential step towards ultrafast spintronic memories with THz data access, as well as ultralow power consumption.Comment: 18 pages, 3 figure

    Picosecond optospintronic tunnel junctions

    Get PDF
    Perpendicular magnetic tunnel junctions (p-MTJs), as building blocks of spintronic devices, offer substantial potential for next-generation nonvolatile memory applications. However, their performance is fundamentally hindered by a subnanosecond speed limitation, due to spin-polarized-current-based mechanisms. Here, we report an optospintronic tunnel junction (OTJ) device with a picosecond switching speed, ultralow power, high magnetoresistance ratio, high thermal stability, and nonvolatility. This device incorporates an all-optically switchable Gd/Co bilayer coupled to a CoFeB/MgO-based p-MTJ, by subtle tuning of Ruderman–Kittel–Kasuya–Yosida interaction. An all-optical “writing” of the OTJ within 10 ps is experimentally demonstrated by time-resolved measurements. The device shows a reliable resistance “readout” with a relatively high tunnel magnetoresistance of 34.7%, as well as promising scaling toward the nanoscale with ultralow power consumption (<100 fJ for a 50-nm-sized bit). Our proof-of-concept demonstration of OTJ might ultimately pave the way toward a new category of integrated spintronic–photonic memory devices

    Factors affecting the transmission of dengue fever in Haikou city in 2019

    Get PDF
    In this study, due to multiple cases of dengue fever in two locations in Haikou, Hainan, several factors affecting the transmission of dengue fever in Haikou in 2019 were analyzed. It was found that dengue fever spread from two sites: a construction site, which was an epidemic site in Haikou, and the university, where only four confirmed cases were reported. Comparative analysis revealed that the important factors affecting the spread of dengue fever in Haikou were environmental hygiene status, knowledge popularization of dengue fever, educational background, medical insurance coverage and free treatment policy knowledge and active response by the government
    corecore