16 research outputs found

    Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus)

    No full text
    In our previous study based on hsp60 PCR-restriction fragment length polymorphism and 16S rRNA gene sequencing, we stated that the bifidobacterial strains isolated from the individual faecal samples of five baby common marmosets constituted different phylogenetically isolated groups of the genus Bifidobacterium. In that study, we also proposed that these isolated groups potentially represented novel species of the genus Bifidobacterium. Out of them, Bifidobacterium aesculapii, Bifidobacterium myosotis, Bifidobacterium tissieri and Bifidobacterium hapali, have been described recently. Another strain, designated MRM 8.19T, has been classified as member of the genus Bifidobacterium on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA, hsp60, clpC, dnaJ, dnaG and rpoB gene sequences. Analysis of 16S rRNA and hsp60 gene sequences revealed that strain MRM 8.19T was related to B. tissieri DSM 100201T (95.8\u200a%) and to Bifidobacterium bifidum ATCC 29521T (93.7\u200a%), respectively. The DNA G+C composition was 63.7\u2009mol% and the peptidoglycan structure was l-Orn(Lys)-l-Ser. Based on the phylogenetic, genotypic and phenotypic data reported, strain MRM 8.19T represents a novel taxon within the genus Bifidobacterium for which the name Bifidobacterium catulorum sp. nov. (type strain MRM 8.19T=DSM 103154T=JCM 31794T) is proposed

    Bifidobacterium myosotis sp. Nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.)

    No full text
    In a previous study on bifidobacterial distribution in New World monkeys, six strains belonging to the Bifidobacteriaceae were isolated from faecal samples of baby common marmosets (Callithrix jacchus L.). All the isolates were Gram-positive-staining, anaerobic, asporogenous and fructose-6-phosphate phosphoketolase-positive. Comparative analysis of 16S rRNA gene sequences revealed relatively low levels of similarity (maximum identity 96\u2009%) to members of the genus Bifidobacterium, and placed the isolates in three independent clusters: strains of cluster I (MRM_5.9T and MRM_5.10) and cluster III (MRM_5.18T and MRM_9.02) respectively showed 96.4 and 96.7\u2009% 16S rRNA gene sequence similarity to Bifidobacterium callitrichos DSM 23973T, while strains of cluster II (MRM_8.14T and MRM_9.14) showed 95.4\u2009% similarity to Bifidobacterium stellenboschense DSM 23968T. Phylogenetic analysis of partial hsp60 and clpC gene sequences supported an independent phylogenetic position of each cluster from each other and from the related type strains B. callitrichos DSM 23973T and B. stellenboschense DSM 23968T. Clusters I, II and III respectively showed DNA G+C contents of 64.9-65.1, 56.4-56.7 and 63.1-63.7\u200amol%. The major cellular fatty acids of MRM_5.9T were C14\u2009:\u20090, C16\u2009:\u20090 and C18\u2009:\u20091\u3c99c dimethylacetal, while C16\u2009:\u20090 was prominent in strains MRM_5.18T and MRM_8.14T, followed by C18\u2009:\u20091\u3c99c and C14\u2009:\u20090. Biochemical profiles and growth parameters were recorded for all the isolates. Based on the data provided, the clusters represent three novel species, for which the names Bifidobacterium myosotis sp. nov. (type strain MRM_5.9T\u2009=\u2009DSM 100196T\u2009=\u2009JCM 30796T), Bifidobacterium hapali sp. nov. (type strain MRM_8.14T\u2009=\u2009DSM 100202T\u2009=\u2009JCM 30799T) and Bifidobacterium tissieri sp. nov. (type strain MRM_5.18T\u2009=\u2009DSM 100201T\u2009=\u2009JCM 30798T) are proposed

    Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: Description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets

    No full text
    The species Bifidobacterium longum is currently divided into three subspecies, B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. This classification was based on an assessment of accumulated information on the species' phenotypic and genotypic features. The three subspecies of B. longum were investigated using genotypic identification [amplified-fragment length polymorphism (AFLP), multilocus sequence analysis (MLSA) and multilocus sequence typing (MLST)]. By using the AFLP and the MLSA methods, we allocated 25 strains of B. longum into three major clusters corresponding to the three subspecies; the cluster comprising the strains of B. longum subsp. suis was further divided into two subclusters differentiable by the ability to produce urease. By using the MLST method, the 25 strains of B. longum were divided into eight groups: four major groups corresponding to the results obtained by AFLP and MLSA, plus four minor disparate groups. The results of AFLP, MLSA and MLST analyses were consistent and revealed a novel subspeciation of B. longum, which comprised three known subspecies and a novel subspecies of urease-negative B. longum, for which the name B. longum subsp. suillum subsp. nov. is proposed, with type strain Su 851T=DSM 28597T=JCM 19995T

    Long-term colonization exceeding six years from early infancy of Bifidobacterium longum subsp. longum in human gut

    No full text
    Abstract Background The importance of the gut microbiota at the early stage of life and their longitudinal effect on host health have recently been well investigated. In particular, Bifidobacterium longum subsp. longum, a common component of infant gut microbiota, appears in the gut shortly after birth and can be detected there throughout an individual’s lifespan. However, it remains unclear whether this species colonizes in the gut over the long term from early infancy. Here, we investigated the long-term colonization of B. longum subsp. longum by comparing the genotypes of isolates obtained at different time points from individual subjects. Strains were isolated over time from the feces of 12 subjects followed from early infancy (the first six months of life) up to childhood (approximately six years of age). We also considered whether the strains were transmitted from their mothers’ perinatal samples (prenatal feces and postnatal breast milk). Results Intra-species diversity of B. longum subsp. longum was observed in some subjects’ fecal samples collected in early infancy and childhood, as well as in the prenatal fecal samples of their mothers. Among the highlighted strains, several were confirmed to colonize and persist in single individuals from as early as 90 days of age for more than six years; these were classified as long-term colonizers. One of the long-term colonizers was also detected from the corresponding mother’s postnatal breast milk. Quantitative polymerase chain reaction data suggested that these long-term colonizers persisted in the subjects’ gut despite the existence of the other predominant species of Bifidobacterium. Conclusions Our results showed that several strains belonging to B. longum subsp. longum colonized in the human gut from early infancy through more than six years, confirming the existence of long-term colonizers from this period. Moreover, the results suggested that these strains persisted in the subjects’ gut while co-existing with the other predominant bifidobacterial species. Our findings also suggested the importance of microbial-strain colonization in early infancy relative to their succession and showed the possibility that probiotics targeting infants might have longitudinal effects. Trial Registration TRN: ISRCTN25216339. Date of registration: 11/03/2016. Prospectively registered

    Additional file 1: Table S1. of Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type

    No full text
    English translation of the lifestyle questionnaire and the scoring system used for each question. Table S2. Subject characteristics and the results of the Illumina sequencing. Table S3. Operational taxonomic unit table for the whole subjects (% in whole reads). Table S4. Basic Local Alignment Search Tool (BLAST) results and representative sequences for the operational taxonomic units. Table S5. Abundance and prevalence of the 66 identified bacterial families and alpha-diversity scores stratified by area of residence. Table S6. Abundance and prevalence of the 66 identified bacterial families and alpha-diversity scores stratified by gender. Table S7. Abundance and prevalence of the 66 identified bacterial families and alpha-diversity scores in the two clusters identified in the male subjects. Table S8. Raw questionnaire data. Table S9. Questionnaire scores stratified by area of residence. Table S10. Questionnaire scores stratified by gender. Table S11. Questionnaire scores in the two clusters identified in the male subjects. Table S12. Detailed Basic Local Alignment Search Tool (BLAST) search results for the operational taxonomic units shown in Table 8. Table S13. Quantitative Insights Into Microbial Ecology (QIIME) bioinformatics pipeline scripts used in the present study. (XLSX 8232 kb
    corecore