30 research outputs found

    Self-patterning Gd nano-fibers in Mg-Gd alloys

    Get PDF
    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with a 〈c〉-rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. This nano-fiber patterning approach could be an effective method to engineer hexagonal metals

    Effects of zinc oxide and condensed tannins on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Get PDF
    This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Distribution and Source Sites of Nonlinear Internal Waves Northeast of Hainan Island

    No full text
    The distribution and source sites of nonlinear internal waves (NLIWs) northeast of Hainan Island were investigated using satellite observations and a wavefront propagation model. Satellite observations show two types of NLIWs (here referred to as type-S and type-D waves). The type-S waves are spaced at a semidiurnal tidal period and the type-D waves are spaced at a diurnal tidal period. The spatial distribution of the two types of NLIWs displays a sandwich structure in which the middle region is influenced by both types of NLIWs, and the northern and southern regions are governed by the type-S and type-D waves, respectively. Solving the wavefront model yields good agreement between simulated and observed wavefronts from the Luzon Strait to Hainan Island. We conclude that the NLIWs originate from the Luzon Strait

    Mechanism of Modified Ether Amine Agents in Petalite and Quartz Flotation Systems under Weak Alkaline Conditions

    No full text
    To investigate the flotation separation behavior of petalite and quartz, various methods were employed in this study. These included micro-flotation experiments, a contact angle analysis, zeta potential analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to explore the separation mechanism of a modified ether amine reagent (L0-503) for petalite and quartz under weakly alkaline conditions. The micro-flotation test results indicated that the modified ether amine collector had a higher collecting ability for quartz than for petalite, with a maximum recovery rate of 93.2% for quartz and a recovery rate consistently below 14% for petalite in the presence of L0-503. This indicates that the modified ether amine reagent can be used as a reverse flotation agent for separating petalite and quartz. The separation mechanism results showed that the modified ether amine reagent had a significantly higher adsorption capacity for quartz than for petalite due to a strong reaction between the quartz and the secondary amine (-NH=) on the modified ether amine collector. Additionally, the electrostatic force and hydrogen bonding between the reagent and quartz further enhanced the adsorption, while no reaction occurred between the reagent and petalite

    L-Arginine Inhibited Inflammatory Response and Oxidative Stress Induced by Lipopolysaccharide via Arginase-1 Signaling in IPEC-J2 Cells

    No full text
    This study aimed to explore the effect of L-arginine on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in IPEC-2 cells. We found that the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), cluster of differentiation 14 (CD14), nuclear factor-kappaBp65 (NF-κBp65), chemokine-8 (IL-8), tumor necrosis factor (TNF-α) and chemokine-6 (IL-6) mRNA were significantly increased by LPS. Exposure to LPS induced oxidative stress as reactive oxygen species (ROS) and malonaldehyde (MDA) production were increased while glutathione peroxidase (GSH-Px) were decreased in LPS-treated cells compared to those in the control. LPS administration also effectively induced cell growth inhibition through induction of G0/G1 cell cycle arrest. However, compared with the LPS group, cells co-treatment with L-arginine effectively increased cell viability and promoted the cell cycle into the S phase; L-arginine exhibited an anti-inflammatory effect in alleviating inflammation induced by LPS by reducing the abundance of TLR4, MyD88, CD14, NF-κBp65, and IL-8 transcripts. Cells treated with LPS+L-arginine significantly enhanced the content of GSH-Px, while they decreased the production of ROS and MDA compared with the LPS group. Furthermore, L-arginine increased the activity of arginase-1 (Arg-1), while Arg-1 inhibitor abolished the protection of arginine against LPS-induced inflammation and oxidative stress. Taken together, these results suggested that L-arginine exerted its anti-inflammatory and antioxidant effects to protect IPEC-J2 cells from inflammatory response and oxidative stress challenged by LPS at least partly via the Arg-1 signaling pathway

    Taurine alleviates oxidative stress in porcine mammary epithelial cells by stimulating the Nrf2‐MAPK signaling pathway

    No full text
    Abstract The high incidence of oxidative stress in sows during late gestation and lactation affects mammary gland health, milk yield, and milk quality. Recently, we found that supplementing maternal diets with 1% taurine improved antioxidant capability and enhanced growth performance in offspring; however, the mechanisms underlying these are unknown. This study aimed to investigate the cytoprotective effects and the mechanism of taurine in mitigating oxidative stress in porcine mammary epithelial cells (PMECs). PMECs were pretreated with 0–2.0 mM taurine for 12 h and then subjected to oxidative injury with 500 μM hydrogen peroxide (H2O2). Pretreatment with taurine attenuated decreased cell viability, enhanced superoxide dismutase, and reduced the intracellular reactive oxygen species accumulation after H2O2 exposure. Taurine also prevented H2O2‐induced endoplasmic reticulum stress. Nuclear factor erythroid 2‐related factor 2 (Nrf2) was essential to the cytoprotective effects of taurine on PMECs, as Nrf2 knockdown significantly inhibited taurine‐induced cytoprotection against oxidative stress. Moreover, we confirmed that Nrf2 induction by taurine was mediated through the inactivation of the p38/MAPK pathway. Overall, taurine supplementation has beneficial effects on redox balance regulation and may protect against oxidative stress in lactating animals

    Numerical Simulation of Gas–Liquid Two-Phase Flow CFD–PBM Model in a Micro–Nanobubble Generator

    No full text
    A micro–nanobubble generator is the most critical component of micro–nano flotation equipment. Understanding the bubble generation characteristics in the generator plays a vital role in optimizing the performance of the device and improving the flotation of fine-grained minerals. In this study, to explore the generation and evolution of bubbles in the micro–nanobubble generator of a cyclonic jet flotation cell, the flow field parameters of the gas–liquid two-phase flow inside the generator were solved using CFD–PBM combined with Luo’s population balance model. The internal bubble size was in the range of 0.99 μm to 140 μm. After the gas entered the generator from the suction pipe, it mainly moved in the center of the tube, and the diameter of the bubbles was relatively large at this time. With the bubble movement, large bubbles in the center were broken into small bubbles and then moved toward the periphery of the tube. Thereafter, the smaller-diameter bubbles gathered and formed large-diameter bubbles. The average diameter of the generated bubbles gradually increased from approximately 30 to 110 μm

    An Exponential Algorithm for Bottom Reflectance Retrieval in Clear Optically Shallow Waters from Multispectral Imagery without Ground Data

    No full text
    Bottom reflectance is a significant parameter characterizing the bottom types for clear optically shallow waters, typically in oceanic islands and reefs. However, there is not an effective physics-based method for inverting the bottom reflectance using multispectral images. In this study, we propose a novel approach for quantitatively inverting the bottom reflectance at 550 nm without the dependence of in situ bottom reflectance data or any other priori knowledge. By linking different pixels in the same image and utilizing the strong linear relationship between their water depths and the spectral related parameters, the global situation of the radiative transfer model was constrained, and an exponential relationship between the log-transformed ratio of the blue–green band reflectance and the bottom reflectance was established. The proposed model was checked by comparing the Hydrolight input bottom reflectance with that inverted from Hydrolight simulated spectrum, resulting in correlating well. Our method has successfully performed using WorldView-2 and Landsat-8 in Midway Island in the North Pacific Ocean, with the cross- and indirectly checking and obtained reliable and robust results. In addition, we assessed the potential of the quantitative bottom reflectance in benthic classification and inversion ranges under different bottom reflectance. These results indicated that compared with those methods relying on in situ data or hyperspectral imagery, our algorithm is more likely to efficiently improve the parameterization of bottom reflectance, which can be very useful for benthic habitat mapping and transferred to large-scale regions in clean reef waters, as well as monitor time-series dynamics of oceanic bottom types to forecast coral reef bleaching

    Effect of Niacin on Growth Performance, Intestinal Morphology, Mucosal Immunity and Microbiota Composition in Weaned Piglets

    No full text
    This study aimed to investigate the effects of niacin on growth performance, intestinal morphology, intestinal mucosal immunity, and colonic microbiota in weaned piglets. A total of 96 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d old, 6.65 ± 0.02 kg body weight (BW)) were randomly allocated into 3 treatment groups (8 replicate pens per treatment, each pen containing 4 males; n = 32/treatment) for 14 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 20.4 mg/kg niacin (NA) or an antagonist for the niacin receptor GPR109A (MPN). The results showed that NA or MPN had no effect on ADG, ADFI, G/F or diarrhea incidence compared with the CON diet. However, compared with piglets in the NA group, piglets in the MPN group had lower ADG (p = 0.042) and G/F (p = 0.055). In comparison with the control and MPN group, niacin supplementation increased the villus height and the ratio of villus height to crypt depth (p < 0.05), while decreasing the crypt depth in the duodenum (p < 0.05). Proteomics analysis of cytokines showed that niacin supplementation increased the expression of duodenal transforming growth factor-β (TGF-β), jejunal interleukin-10 (IL-10) and ileal interleukin-6 (IL-6) (p < 0.05), and reduced the expression of ileal interleukin-8 (IL-8) (p < 0.05) compared with the control diet. Piglets in the MPN group had significantly increased expression of ileal IL-6, and jejunal IL-8 and interleukin-1β (IL-1β) (p < 0.05) compared with those in the control group. Piglets in the MPN group had lower jejunal IL-10 level and higher jejunal IL-8 level than those in the NA group (p < 0.05). The mRNA abundance of duodenal IL-8 and ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) genes were increased (p < 0.05), and that of ileal IL-10 transcript was decreased (p < 0.05) in the MPN group compared with both the control and NA groups. Additionally, niacin increased the relative abundance of Dorea in the colon as compared with the control and MPN group (p < 0.05), while decreasing that of Peptococcus compared with the control group (p < 0.05) and increasing that of Lactobacillus compared with MPN supplementation (p < 0.05). Collectively, the results indicated that niacin supplementation efficiently ensured intestinal morphology and attenuated intestinal inflammation of weaned piglets. The protective effects of niacin on gut health may be associated with increased Lactobacillus and Dorea abundance and butyrate content and decreased abundances of Peptococcus
    corecore