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Self-patterning Gd nano-fibers in 
Mg-Gd alloys
Yangxin Li1,2, Jian Wang3, Kaiguo Chen4, Meiyue Shao2, Yao Shen1, Li Jin2 & Guo-zhen Zhu1

Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, 
in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we 
report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their 
strength and deformability. 1-nm Gd nano-fibers, with a 〈c〉-rod shape, are formed and hexagonally 
patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. 
Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, 
overcome the inherent limitations in strength and ductility of Mg alloys. This nano-fiber patterning 
approach could be an effective method to engineer hexagonal metals.

Microstructure engineering is a persistently vigorous technique in altering material’s properties through tailor-
ing geometrical features of structural units at multiple length scales and modifying three-dimensional arrange-
ments of structural units. Structural units can be classified into three, two, one, or zero dimensions, such as 
three-dimensional volumes1,2 (phases, grains, particles/precipitates), two-dimensional surfaces3,4 (boundaries, 
interphases), one-dimensional lines (triple lines, edges, dislocations) or zero-dimensional points (quadruple 
points, vertices on polyhedral particles)5. In advancing the material’s performance resulted from these struc-
tural units, arranging their distribution provides different strategies in addition to regulating the dimensions and 
shapes of these structural units. To realize specific microstructure, heat treatment, mechanical deformation, and/
or their combinations can be applied while adjusting chemical compositions of a material.

Rare-earth (RE) elements6 has a demonstrated significance in tuning the microstructure of Mg alloys, such 
as weakening basal texture of Mg alloys7,8, refining grain sizes, forming long-period stacking-ordered structure4, 
etc. RE solutes can also be trapped in twin boundaries, and in turn, impeding migration of twin boundaries9,10. In 
addition, the elastic interactions between solutes and dislocations lead to solute segregation and depletion around 
dislocation cores. Such a solute atmosphere, which can maintain their confined structural and chemical states 
over a range of evaluated temperatures11, produces a drag force on the moving dislocations, pins the dislocation 
motion, and thus modifies the mechanical performance of materials.

Here, we reported self-assembled hexagonal patterns of Gd-segregated dislocations that have a 〈​c〉​-rod shape. 
These pinned dislocations act as the predictable inhibitor for basal slips because the glide of basal dislocations 
must cut them, but less affect the glide of non-basal prismatic dislocations because they are on the parallel planes. 
Additionally, the crystal domains, strengthened by such pinned dislocation patterns, can effectively impede twin 
propagation. As a result, such dislocation patterns can change the relative mobility of plastic deformation carriers 
(dislocations and twins).

Methods
Mg-1Gd (wt.%) alloy billets were prepared through melting high purity Mg (99.99%) and Mg-25 wt.%Gd master 
alloys in an electric furnace under a protective gas mixture of SF6/CO2. The billets were partly indirect extruded, 
at temperatures of 400 °C with extrusion ratio of 16, up to 150 mm from the die. After that, the die and butt were 
removed from the machine and quenched together into a water bath. Samples then were isochronally annealed 
at 200 °C, 250 °C, 300 °C for 2–4 hours. TEM samples were prepared through twin-jet electro-polishing methods 
and additional ion polishing at 500 eV for 0.5 h using Gatan precision ion polishing system (PIPS II MODEL 695). 
Structural characterization was carried out under scanning transmission electron microscopy (STEM) mode at 
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200 kV using a JEOL-ARM200F microscope with a probe-forming lens corrector. Due to the large difference in 
atomic numbers of Gd and Mg, high-angle annular dark-field (HAADF) imaging technique was applied to image 
Gd atoms in binary Mg-Gd alloys.

Results
Within binary Mg-Gd alloys after hot extrusion at 400 °C, we for the first time observed hexagonally patterned 
domains, which have a width of less than 200 nm and several microns in length, dispersive in the Mg matrix. 
Viewed from the 〈​c〉​-axis in Fig. 1a (more details in Fig. S1), each hexagonal pattern has an identical interspacing, 
which varies from 5 nm to 20 nm. Most domains have an interspacing of ~10 nm. The hexagonal patterns consist 
of Gd segregated clusters, shown as the bright intensity in the Z-contrast images (scanning transmission electron 
microscopy-high-angle annular dark-field, STEM-HAADF images) in Fig. 1c–f. The Gd segregations can slightly 
deviate from ideal hexagonal positions (see Fig. 1c,d). Viewed from the 〈​b〉​-axis ( 1100 ) in Fig. 1b, straight-line 
features associated with the patterned fibers are characterized with interspacings of 5–15 nm. These straight-line 
features, lying along the 〈​c〉​-axis, turn out as Gd-rich fibers with ~1 nm in diameter. (Fig. 1e,f and Fig. S4). 
Combining the two orthogonal projections, we believe that Gd nano-fibers with the 〈​c〉​-rod shape are 
self-assembled into hexagonal patterns within the Mg matrix.

These directional nano-rods cannot exist without the dislocation module because the capillarity effect pre-
vents them from forming at the nanoscale. Further crystallographic analysis reveals that these Gd nano-fibers are 
Gd-segregated dislocations. Some of these dislocations are characterized with the Burgers vector 1/3 1120  that 
is identified using the Burgers circuit method (see Fig. 2e–h). It is worth mentioning that short-range orders of 
Gd atoms, such as hexagonal rings and zigzag patterns, were recorded in more than 70% of the Gd segregations 
(see Figs 1c,d and 2). These characteristics of Gd short-range orders agree well with the observation in experi-
ments and simulations12,13. The Gd rings always present at the dilated part of the dislocations because Gd has 
~20% larger radius than Mg. The hexagonal patterns contain a set of Gd-segregated 1/3 1120  dislocations, which 
have the Burgers vectors either parallel or with 60° rotation, as shown in Fig. 2e,f. Some Gd-segregated disloca-
tions may have Burgers vectors of 〈​0001〉​, because Burgers circuits are closed for such dislocations after we ana-
lyzed more than 20 hexagonal patterns (See those in Fig. 2f). The 〈​c〉​-screw character of these dislocations can be 
additionally supported by a large number of dislocations with 〈​c〉​-components through the Burgers vector anal-
ysis under two-beam conditions (See Fig. S3). These distinctive dislocations cause a few degrees misorientation 
between the adjacent grains bonded by one hexagonal pattern, as evidenced by sharp adjacent spots from the Fast 
Fourier Transform (FFT) of the hexagonal patterns (see insets in Fig. 2a,b and d).

Figure 1.  Gd nano-fiber patterns. (a and b) are Transmission Electron Microscopy Bright-Field (TEM-BF) 
images of the typical Gd segregation patterns within binary Mg-Gd alloys, viewed from 〈​0001〉​ and 1100 , 
respectively. (c–f) scanning TEM High-Angle Annular Dark-Field (STEM-HAADF) images showing Gd 
segregation in the bright contrast. Panel c is the enlarged view of boxed region in (a). (d) is a different Gd nano-
fiber pattern viewed from 〈​0001〉​. The beam direction for (e and f) is 1100 .
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The Gd nano-fiber hexagonal patterns are commonly observed near low-angle grain boundaries, which also 
consist of Gd-segregated dislocations (see details in Figs 1 and 2 and Fig. S2). A huge number of low-angle 
grain boundaries are randomly distributed within deformed grains with a few microns in size. The average spac-
ing of Gd-segregated dislocations within the low-angle grain boundaries is around 3–15 nm, corresponding to 
the measurable misorientation angles of 1–6° about the 〈​c〉​-axis. This is in agreement with the analysis accord-
ing to Frank’s law14. A significant Z-contrast of Gd nano-fiber patterns was detected when the interspacing of 
Gd-segregated dislocations is ~3–10 nm (see Fig. 2a–d). Gd-segregated dislocations are barely visible and irregu-
larly patterned in a hexagonal shape as increasing the interspacing, e.g. 20 nm (see Fig. S5).

Discussion
Hexagonal patterns of Gd nano-fibers discovered in binary Mg-Gd alloys are dependent on annealing tempera-
ture. Before extrusion, Gd nano-fiber patterns were not detected in as-cast samples. The as-extruded microstruc-
ture was frozen by the indirect extrusion method, in which the die and butt were modified with fast quenching 
capability. Using TEM-BF techniques, we detected the same hexagonal patterns in as-extruded samples (Fig. S1) 
as in the annealed samples at 200 °C we showed before. The difference is that the as-extruded Gd segregation 
spreads in a “near-honeycomb” pattern (Fig. 3) or other irregular pattern (Fig. S6) with ~10 nm in diameter, com-
pared to the two-dimensional arrays of Gd nano-fibers. An array of 1/3 1120  dislocations was observed with 
nearly random Gd solutes around their cores (Fig. 3b). These messy arrays further evolve into the perfect hexag-
onal pattern consisting of 1-nm Gd fibers after 200 °C and 250 °C annealing for 2–4 hours. We did not find any 
hexagonal pattern or 1-nm Gd fibers within the sample after 300 °C annealing (Fig. S7). The disappearance of 
such hexagonal pattern is possibly ascribed to recrystallization15. Thus, 1-nm Gd fibers and the corresponding 
hexagonal patterns would be favorably formed after moderate temperature annealing, (e.g. 200–250 °C) while 
destroyed at elevated temperatures.

The puzzle of patterning Gd fibers in a hexagonal shape can be understood in the framework of dislocation 
interaction. Corresponding to characteristics of dislocation patterns in Fig. 2, we assumed that a hexagonal pat-
tern is comprised of 〈​c〉​ screw dislocations with alternative signs and an array of 〈​c +​ a〉​ dislocations, as shown 
in Fig. 4. This model was proposed based on the facts: (a) no extra misorientation was detected between the 
adjacent grains across the hexagonal pattern except the one caused by the low-angle grain boundary (represented 
by an array of 〈​c +​ a〉​ dislocations); (b) the FFT of the local area is very sharp indicating a sharp, rather than a 
gradual transition of orientations; (c) there is no elastic interactions between 〈​c〉​ screw dislocations and 〈​a〉​ edge 
dislocations because they are perpendicular to each other. We found that the maximum resolved stresses on 
individual slip systems are estimated to be smaller than 4 ×​ 10−3 μ​ for the 〈​c〉​ screw dislocations inside the pattern 
as the interspacing is 10 nm. Where μ​ is shear modulus. Thus, the formation can be rationalized as follows. Once 
a low-angle grain boundary formed by the spatial pileup of 〈​c +​ a〉​ prismatic dislocations, 〈​c〉​ dislocations can 
come from two sources, either activated 〈​c〉​ slips or the resultant of 〈​c +​ a〉​ dislocations that are repelled by the 
grain boundary and react to each other and form 〈​c〉​ dislocations. These dislocations are then self-assembled in 

Figure 2.  STEM-HAADF raw images of annealed samples. From left to right, Gd nano-fibers have an 
interspacing of ~3 nm, ~6 nm, and ~10 nm, in corresponding to a measurable rotation angle of 6°, 4°, and 2° 
between the adjacent lattices. Insets in (a,b and d) are the corresponding Fast Fourier Transform (FFT) images. 
(e–h) are enlarged view of regions selected from (a–d), respectively. The identified Burgers vectors, along 
crystallographic directions of 1/3 1120 , are labeled by yellow arrows. The Gd hexagonal rings and zigzag 
patterns within the dislocation cores are clearly recorded.
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a hexagonal pattern due to the elastic interaction. Such patterns could be stabilized by the Peiers stress of the 〈​c〉​ 
screw dislocation, which is greater than the maximum resolved stresses16,17.

From mechanical viewpoint, the pinned dislocations in the pattern could inhibit the easy basal slips by the 
“forest” strengthening mechanism18, for the purpose of strengthening Mg alloys, while crystal domains strength-
ened by such pinned dislocation patterns can effectively impede twin propagation, in turn, reducing twinning 
while improving deformability of Mg alloys. The tensile tests for normally extruded samples (containing no 
Gd-fiber pattern) and indirect-extruded samples (containing the embryo of Gd-fiber patterns) indicate that the 
self-patterning Gd nano-fibers do improve the mechanical responses (Fig. S9). Thus, introducing patterned Gd 
nano-fibers might provide a new path for manufacturing advanced hexagonal alloys in general.
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Experimental Methods:  

 

1. Experimental alloys 

Mg-1Gd (wt.%) alloy billets, with 60 mm in diameter and 50 mm in length, were prepared 

through melting high purity Mg (99.99%) and Mg-25wt.%Gd master alloys in an electric furnace 

under a protective gas mixture of SF6/CO2. The billets were partly indirect extruded at 

temperatures of 400ºC with extrusion ratio of 16. The billets were heated to the extrusion 

temperature and held isothermally for 30 mins before extrusion. Extrusion experiments were 

stopped when the billets had been extruded to 150 mm from the die, and the die and butt were 

removed from the machine and quenched together into a water bath. As the extrusion butt was 

quenched immediately after extrusion, static recrystallization was hindered and the dynamically 

recrystallized microstructure during extrusion was preserved. After extrusion, samples were 

isochronally annealed at 200°C, 250°C, 300°C for 2-4 hours.  

 

2. Sample preparation and TEM characterization 

The as-fabricated Gd-Mg alloys were cut into slices with ~600 μm in thickness, and then 

mechanically ground to ~100 μm. TEM discs with 3 mm in diameter were punched out from the 

slices, and then twin-jet electro-polished in an ethanol solution with 4 pct perchloric acid. TEM 

specimens were further thinned at 500 eV for 0.5 h using Gatan precision ion polishing system 

(PIPS II MODEL 695). Structural characterization was carried out under scanning transmission 

electron microscopy (STEM) mode at 200 kV using a JEOL-ARM200F microscope with a 
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probe-forming lens corrector. Due to the large difference in atomic numbers of Gd and Mg, high-

angle annular dark-field (HAADF) imaging technique was applied to image Gd atoms in binary 

Mg-Gd alloys. The probe convergence semi-angle was approximately 30 mrad. The collection 

semi-angle of the annular dark-field (ADF) detector was ~68-280 mrad.  

 

Supplementary Text:  

1. Distribution of the hexagonal patterns 

Viewed along [0001], Figure S1 shows a typical grain of a few microns in size. Since hot 

extrusion was carried out at 400°C and cooled down immediately, no twins were detected in as-

extruded samples and those with 200°C and 250°C annealing. Even in the as-extruded sample in 

Figure S1, we did not find a high density of dislocations, except some grains with dislocation 

pile-up near their grain boundaries. At grain boundaries, Gd segregation with short-range 

ordering was clearly observed, which is consistent with the previous report. (1) Within most 

grains, we detected a huge number of low-angle grain boundaries, consisting of segregated 

dislocations. Some of these low-angle grain boundaries accompanies with hexagonal patterns, 

labeled as the red arrows in Figure S1a. Those hexagonal patterns are less than 200 nm in width 

and a few microns in length. The interspacing within those hexagonal patterns is usually in the 

range of 3-20 nm, with a predominant interspacing of ~10 nm.   
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Figure S1. TEM images showing the distribution of hexagonal patterns in one grain viewed 

along the [0001], as indicated from the diffraction pattern in b. c, An enlargement of the 

elliptical area in a. Such hexagonal patterns, with <200nm in width and ~ micron in length, are 

always connected with low-angle grain boundaries.  
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2. Low-angle grain boundaries with Gd-segregated dislocations 

When the electron beam is along <0001>, low-angle grain boundaries consist with a set of Gd-

segregated dislocations, showing as the array of bright dots in the HAADF images in Figure S2. 

Most low-angle grain boundaries detected are along <1100 > . The associated dislocations have 

the identified Burgers vector of 13 <1120 > . The identified Burgers vectors can change their 

crystallographic directions, e.g. with 60° rotation, corresponding to the steps and kinks at the 

low-angle grain boundaries. Some low-angle grain boundaries are along <1120 > , with 

alternating dislocations of identified Burgers vector 13 <1120 > . It should be noted that we 

couldn’t identify the Burgers vector for a few low-angle grain boundaries, because the 

dislocations in these boundaries show a pure <c> component, parallel to the beam direction. As 

shown in the red arrows in Figure S2, the hexagonal patterns of Gd segregation were found to 

form along low-angle grain boundaries. In addition, the hexagonal patterns are preferentially 

located beside Gd-segregated dislocations changing their Burgers vector directions.       

 

 

Figure S2. STEM-HAADF raw images of Gd-segregated arrays. The low-angle grain 

boundaries were always found at the start or end of these Gd segregated arrays. Most low-angle 

grain boundaries are along <1100 >  and those arrays preferentially start with the dislocations 

changing their identified Burgers vectors (also see Figure 2).            
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3. Burgers vector with c-components 

The types of dislocations were identified under different two-beam conditions, g = 0002 and g = 

1010 , respectively. The invisible dislocations in Figure S3b with diffraction vector of g = 1010 , 

have Burgers vectors with <c>-component. It should be noted that cross-slip trails were 

observed, suggesting the activation of <c> slips. The existence of Burgers vectors <0001> and 

the activation of <c> slips are required to form the hexagonal patterns. 

 

 

Figure S3. TEM-BF images under two-beam conditions with diffraction vector of g=0002 (a) 

and g=1010  (b), respectively. The dislocation with <c>-components is confirmed. The white 

arrows labeled the same area in a and b.     

 

4. Gd-segregation viewed from <1100 >  

Figure S4 shows the hexagonal patterns when the electron beam is along <1100 > . These Gd-

nano-fibers are along <0001>. As shown in Figure S4b, the interspacing between the segregated 

lines is approximately 5 nm.   
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Figure S4. STEM-HAADF raw images showing Gd nano-fibers viewed from <1100 > . b, 

Enlarged view of the boxed region labeled in a.   

 

5. Hexagonal pattern with large interspacing   

Viewed along <0001>, some hexagonal patterns have a large interspacing, e.g. 20 nm, compared 

to the typical value of 10 nm. (See Figure S5a). As shown in Figure S5b and c with enhanced 

contrast after Fast Fourier Transform (FFT) filtering, those hexagonal patterns include barely 

visible Gd-segregations with a cellular structure. Due to its weak contrast, it is hard to locate the 

template, the low-angle grain boundary with 20 nm interspacing between dislocations.    
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Figure S5. The hexagonal pattern showing in TEM-BF images in a with interspacing of ~20 nm. 

b, The STEM-HAADF raw images of hexagonal pattern with ~20 nm interspacing. c, The FFT 

filtered image of b .  

 

  

6. Hexagonal pattern in as-excluded samples   

As shown in Fig S6, hexagonal patterns are under developed in as-excluded samples. Viewed 

along <0001>, Burgers vectors of 13 <1120 >  were identified at some Gd-segregations. The 

cellular structure has relatively weak contrast because Gd solutes have not been fully segregated 

into dislocations.        

 

Figure S6. STEM-HAADF raw images of as-excluded sample indicating the evolution of Gd 

segregated arrays. b, Enlarged view of a.  

 

 

7. Microstructure after 300°C annealing  
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Gd-segregations and their hexagonal patterns form right after hot extrusion, have better shape 

after 200°C and 250°C annealing, and can be destroyed at higher temperature. Within samples 

after 300°C annealing (see TEM images in Fig. S7), annealing twins, instead of hexagonal 

patterns, were recorded. We did not find twins in as-extruded samples and annealed samples at 

200°C and 250°C. The existence of annealing twins is consistent with the fact that Mg alloys has 

a recrystallization temperature of ~260°C (15).  

 

Figure S7. TEM-BF images of annealed sample at 300°C for 4 hours, showing the formation of 

an annealing twin.  

 

 

8. Hexagonal pattern of dislocations 

Figure S8 is schematics of the dislocation components in the patterned fibers. The columns other 

than the one forming the low-angle grain boundary are composed of screw dislocations of 

alternative signs, and the grain boundary dislocations are of <a+c> dislocations, with the signs of 

<a> edge dislocations identical but those of the <c> screw dislocations alternating. Such a 

picture comes up with several facts: (1) There is no contribution of misorientation across these 

fibers from these non-grain boundary dislocations, as the misorientaion of the parts outside of the 
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fibers are the same of that produced by the single column of low-angle grain boundary 

dislocations; (2) The diffraction pattern of the local area is very sharp indicating a sharp, rather 

than gradual, transition of orientations; (3) There is no interactions between screw dislocations 

and edge dislocations since it is isotropic in the basal plane of a hexagonal lattice and isotropic 

theory works exactly for dislocations parallel to the <c>-axis; (4) Gd fibers are formed by 

segregation to dislocation cores. 

Stability of such patterns is evaluated by checking the maximum resolved stress on each slip 

system of the non-grain-boundary screw dislocations.  The grain boundary are stabilized by its 

edge components and its screw components are thus anchored to the edge ones. Simple 

calculations show that when the number of dislocations in the column is larger than the order of 

10, the maximum resolved stress on a screw dislocation from all other dislocation in the pattern 

are below 4x10-3 µ except for the one or two dislocations at each end. These columns can be 

stabilized since the Peiers stress of the dislocations, the minimum stress needed to move a 

straight dislocation, is well above 4x10-3 µ for the dislocations in the prismatic planes with the 

pinning effect of Gd solution (16-17).  The dislocations at each end can be stabilized by other 

defects such as grain boundary or threading dislocations. 
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Figure S8. Schematics of the dislocations patterns. a, A pattern of two columns, b, A pattern of 

multiple (four) columns. The low-angle grain boundaries are composed of mixed <c+a> 

dislocations, while other columns are of screw (<c>, in circles) dislocations.  A circle with “+” 

inside denotes a positive screw dislocation, while one with “-” inside a negative screw 

dislocation. a1, a2 and a3 show the <1120 > directions in the basal plane. The bar-figures show the 

maximum resolved stress (MRS) of the left or left-most column on one of the three <a> slip 

systems.  

 

 
8. Tensile Responses 

Due to these difficulties in quantifying the volume ratio of Gd-fiber patterns, we cannot quantify 

the Gd fiber-reinforced effect on the mechanical properties. A few tensile tests indicate the 

positive effect caused by the Gd-fiber pattern. In order to maintain the identified texture caused 

from hot extrusion, we compared the tensile results of extruded samples and indirect-extruded 

samples. The indirect-extruded samples, with the embryo of Gd-fiber patterns, have at least 20% 

strengthen effect compared to the normally extruded samples, which have no Gd-fiber pattern. 



 12 

The normally extruded samples experience additional annealing treatment associated to the 

normal extrusion processes, which destroys any possible Gd-fiber pattern. In addition, we 

performed the tensile tests for indirect-extruded samples, with Gd-fiber patterns after additional 

aging at 200°C. As shown in Figure S9, the self-patterning Gd-fibers do slightly increase both 

the strength and ductility even after intermediate annealing treatment.  

 

 
Figure S9. Tensile results of Mg-Gd alloys with/without Gd nano-fiber patterns. The black, red 

and blue curves present the mechanical responses of Mg-Gd alloys without any patterns, with the 

embryo, and with the Gd-fiber patterns, respectively. 
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