101 research outputs found

    Two New Bounds on the Random-Edge Simplex Algorithm

    Full text link
    We prove that the Random-Edge simplex algorithm requires an expected number of at most 13n/sqrt(d) pivot steps on any simple d-polytope with n vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better bounds for specific classes of polytopes. As one application, we show that for combinatorial d-cubes, the trivial upper bound of 2^d on the performance of Random-Edge can asymptotically be improved by any desired polynomial factor in d.Comment: 10 page

    On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling

    Full text link
    Vertex colouring is a well-known problem in combinatorial optimisation, whose alternative integer programming formulations have recently attracted considerable attention. This paper briefly surveys seven known formulations of vertex colouring and introduces a formulation of vertex colouring using a suitable clique partition of the graph. This formulation is applicable in timetabling applications, where such a clique partition of the conflict graph is given implicitly. In contrast with some alternatives, the presented formulation can also be easily extended to accommodate complex performance indicators (``soft constraints'') imposed in a number of real-life course timetabling applications. Its performance depends on the quality of the clique partition, but encouraging empirical results for the Udine Course Timetabling problem are reported

    a direct encoding for nnc polyhedra

    Get PDF
    We present an alternative Double Description representation for the domain of NNC (not necessarily closed) polyhedra, together with the corresponding Chernikova-like conversion procedure. The representation uses no slack variable at all and provides a solution to a few technical issues caused by the encoding of an NNC polyhedron as a closed polyhedron in a higher dimension space. A preliminary experimental evaluation shows that the new conversion algorithm is able to achieve significant efficiency improvements

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Inschriften aus Pisidien

    No full text
    • …
    corecore