2,277 research outputs found

    NIV-SSD: Neighbor IoU-Voting Single-Stage Object Detector From Point Cloud

    Full text link
    Previous single-stage detectors typically suffer the misalignment between localization accuracy and classification confidence. To solve the misalignment problem, we introduce a novel rectification method named neighbor IoU-voting (NIV) strategy. Typically, classification and regression are treated as separate branches, making it challenging to establish a connection between them. Consequently, the classification confidence cannot accurately reflect the regression quality. NIV strategy can serve as a bridge between classification and regression branches by calculating two types of statistical data from the regression output to correct the classification confidence. Furthermore, to alleviate the imbalance of detection accuracy for complete objects with dense points (easy objects) and incomplete objects with sparse points (difficult objects), we propose a new data augmentation scheme named object resampling. It undersamples easy objects and oversamples difficult objects by randomly transforming part of easy objects into difficult objects. Finally, combining the NIV strategy and object resampling augmentation, we design an efficient single-stage detector termed NIV-SSD. Extensive experiments on several datasets indicate the effectiveness of the NIV strategy and the competitive performance of the NIV-SSD detector. The code will be available at https://github.com/Say2L/NIV-SSD

    Statistical Spectral Characteristics of Three-Dimensional Winds in the Mesopause Region Revealed by the Andes Lidar

    Get PDF
    By analyzing data recorded at the Andes Lidar Observatory in Cerro Pachon, Chile (30.3°S, 70.7°W) from May 2014 to July 2019, we investigated the fundamental features of three-dimensional wind and temperature spectra. The vertical wavenumber spectral amplitudes of horizontal winds show obvious seasonal variations that are closely related to the seasonal variations in the source and background winds. The wavenumber spectral slopes of the horizontal winds are systematically less negative than −3, with mean values of −1.96 and −2.18 for zonal and meridional winds, respectively. The zonal and meridional wind frequency spectra have mean slopes of −1.37 and −1.56, respectively; these values are slightly less negative than −5/3. Moreover, the frequency spectral amplitudes show different seasonal variations from those of the wavenumber spectra, possibly because they correspond to different GW spectral components. The vertical wind has obviously different spectral features than the horizontal winds. The vertical wind spectra are notably shallower than the horizontal wind spectra, with mean slopes of −0.82 and −0.91 for the wavenumber and frequency spectra, respectively, departing evidently from those expected under linear instability theory (LIT). Although the vertical wind spectrum is almost always separable, the horizontal wind spectra are separable only at high frequencies. As the frequency increased, the horizontal wind wavenumber spectra become shallower and depart from the spectral slope expected under LIT, likely because high-frequency GWs are not completely saturated. In general, our results do not support LIT

    Unifying constitutive law of vibroconvective turbulence in microgravity

    Full text link
    The emergence of unified constitutive law is a hallmark of convective turbulence, i.e., Nu∼RaβNu \sim Ra^\beta with β≈0.3\beta \approx 0.3 in the classical and β=1/2\beta=1/2 in the ultimate regime, where the Nusselt number NuNu measures the global heat transport and the Rayleigh number RaRa quantifies the strength of thermal forcing. In recent years, vibroconvective flows have been attractive due to its ability to drive flow instability and generate ``artificial gravity'', which have potential to effective heat and mass transport in microgravity. However, the existence of constitutive laws in vibroconvective turbulence remains unclear. To address this issue, we carry out direct numerical simulations in a wide range of frequencies and amplitudes, and report that the heat transport exhibits a universal scaling law Nu∼a−1ReosβNu \sim a^{-1} Re_\mathrm{os}^\beta where aa is the vibration amplitude, ReosRe_\mathrm{os} is the oscillational Reynolds number, and β\beta is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport, and the NuNu-scaling exponent β\beta is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from β=2\beta=2 in the OBL-dominant regime to β=4/3\beta = 4/3 in the TBL-dominant regime. We conclude that vibroconvective turbulence in microgravity defines a distinct universality class of convective turbulence. This work elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which gravity is nearly absent.Comment: 18 pages, 3 figure

    Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes

    Get PDF
    Background Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection. Methods Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology. Results Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3–10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host’s Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis. Conclusions Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS

    Vimentin Is a Novel Anti-Cancer Therapeutic Target; Insights from In Vitro and In Vivo Mice Xenograft Studies

    Get PDF
    BACKGROUND:Vimentin is a ubiquitous mesenchymal intermediate filament supporting mechano-structural integrity of quiescent cells while participating in adhesion, migration, survival, and cell signaling processes via dynamic assembly/disassembly in activated cells. Soft tissue sarcomas and some epithelial cancers exhibiting "epithelial to mesenchymal transition" phenotypes express vimentin. Withaferin-A, a naturally derived bioactive compound, may molecularly target vimentin, so we sought to evaluate its effects on tumor growth in vitro and in vivo thereby elucidating the role of vimentin in drug-induced responses. METHODS AND FINDINGS:Withaferin-A elicited marked apoptosis and vimentin cleavage in vimentin-expressing tumor cells but significantly less in normal mesenchymal cells. This proapoptotic response was abrogated after vimentin knockdown or by blockade of caspase-induced vimentin degradation via caspase inhibitors or overexpression of mutated caspase-resistant vimentin. Pronounced anti-angiogenic effects of Withaferin-A were demonstrated, with only minimal effects seen in non-proliferating endothelial cells. Moreover, Withaferin-A significantly blocked soft tissue sarcoma growth, local recurrence, and metastasis in a panel of soft tissue sarcoma xenograft experiments. Apoptosis, decreased angiogenesis, and vimentin degradation were all seen in Withaferin-A treated specimens. CONCLUSIONS:In light of these findings, evaluation of Withaferin-A, its analogs, or other anti-vimentin therapeutic approaches in soft tissue sarcoma and "epithelial to mesenchymal transition" clinical contexts is warranted

    IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Th17 subset and IL-17 have been found in increased frequencies within certain tumors. However, their relevance in cancer biology remains controversial. This study aimed to clarify the biological action of IL-17 on hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>Effects and underlying molecular mechanisms of IL-17 on human HCC were explored <it>in vitro </it>using exogenous IL-17 stimulation and in nude mice by implanting IL-17 overexpressed HCC cells. The clinical significance of IL-17 was investigated in tissue microarrays containing HCC tissues from 323 patients following hepatectomy using immunohistochemistry.</p> <p>Results</p> <p>Although exogenous IL-17 showed no direct effect on the growth rate of HCC cells <it>in vitro</it>, PCR and ELISA showed that IL-17 selectively augmented the secretion of diverse proinvasive factors and transwell showed a direct promotion of invasion of HCC cells by IL-17. Furthermore, transfection of IL-17 into HCC cells significantly promoted neoangiogenesis, neutrophil recruitment and tumor growth <it>in vivo</it>. Using siRNA mediated knockdown of AKT and STAT3, we suggested that the effects of IL-17 were operated through activation of the AKT signaling in HCC, which resulted in IL-6 production. Then, IL-6 in turn activated JAK2/STAT3 signaling and subsequently up-regulated its downstream targets IL-8, MMP2, and VEGF. Supporting these findings, in human HCC tissues, immunostaining indicated that IL-17 expression was significantly and positively associated with STAT3 phosphorylation, neutrophil infiltration and increased tumor vascularity. The clinical significance of IL-17 was authenticated by revealing that the combination of intratumoral IL-17+ cells and phospho-STAT3 served as a better prognosticator for postoperative tumor recurrence than either marker alone.</p> <p>Conclusions</p> <p>IL-17 mediated tumor-promoting role involves a direct effect on HCC cells through IL-6/JAK2/STAT3 induction by activating the AKT pathway.</p
    • …
    corecore