2,563 research outputs found

    Non-Abelian Chiral Spin Liquid on the Kagome Lattice

    Full text link
    We study S=1S=1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+ipyp_x+ip_y superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices SS and TT, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the SO(3)1SO(3)_1 (or, equivalently, SU(2)2SU(2)_2) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the Z2Z_2 Abelian spin liquid.Comment: 12 pages, 7 figures, 1 tabl

    Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    Get PDF
    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers’ requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product

    Proposal for Measurement of the Two-body Neutron Decay using Microcalorimeter

    Full text link
    The bound beta-decay (BoB) of neutron is also known as the two-body neutron decay, which is a rare decay mode into a hydrogen atom and an anti-neutrino. The state of neutrino can be exactly inferred by measuring the state of hydrogen atom, providing a possible pathway to explore new physics. However, this rare decay mode has not yet been observed so far since it was predicted in 1947. The challenge in observing this decay is not only that its cross section is extremely low, equivalent to about branching ratio of the order of 10610^{-6} of the three-body decay, but also that the final-state hydrogen atom is neutral and has extremely low kinetic energy, which cannot be effectively detected. In this study, we propose a microcalorimeter-based scheme for measuring the kinetic energies of hydrogen atoms produced from BoB of ultracold neutrons, which has a great advantage in terms of accuracy of the energy measurement. In this study, first, several important issues that require rigorous considerations for the decay measurements and possible solutions are discussed. Then, the requirements of the neutron flux and the appropriate structure design of the microcalorimeter are present by theoretical calculations. In short, this paper outlines our proposed novel experimental scheme for observing the BoB mode, addressing the possible solutions to all the necessary problems

    Low temperature and high magnetic field spectroscopic ellipsometry system

    Get PDF
    We report on the design and implementation of a spectral ellipsometer at near-infrared wavelength (700-1000 nm) for samples placed in high magnetic fields (up to 14 T) at low temperatures (~4.2 K). The main optical components are integrated in a probe, which can be inserted into a conventional long-neck He dewar and has a very long free-space optical path (~1.8 m×2). A polarizer-sample-(quarter-wave plate)-rotating analyzer configuration was employed. Two dielectric mirrors, one before and one after the sample in the optical path, helped to reflect the light back to the analyzer and a two-axis piezo-driven goniometer under the sample holder was used to control the direction of the reflected light. Functional test results performed on an intrinsic GaAs wafer and analysis on the random error of the system are shown. We obtained both amplitude and phase ellipsometric spectra simultaneously and observed helicity transformation at energies near the GaAs exciton transitions in the phase spectra. Significant shifts of them induced by magnetic fields were observed and fitted with a simple model. This system will allow us to study the collective magneto-optical response of materials and spatial dispersive exciton-polariton related problems in high external magnetic fields at low temperatures

    Angiopoietin-2 impairs collateral artery growth associated with the suppression of the infiltration of macrophages in mouse hindlimb ischaemia

    Get PDF
    Abstract Background Angiopoietin-2 (Ang-2), a ligand of the Tie-2 receptor, plays an important role in maintaining endothelial cells and in destabilizing blood vessels. Collateral artery growth (arteriogenesis) is a key adaptive response to arterial occlusion. It is unknown whether the destabilization of blood vessels by Ang-2 can affect arteriogenesis and modulate mononuclear cell function. This study aimed to investigate the effects of Ang-2 on collateral artery growth. Methods Hindlimb ischaemia model was produced in C57BL/6 mice by femoral artery ligation. Blood flow perfusion was measured using a laser Doppler perfusion imager quantitative RT-PCR analysis was applied to identify the level of angiogenic factors. Results After the induction of hindlimb ischaemia, blood flow recovery was impaired in mice treated with recombinant Ang-2 protein; this was accompanied by a reduction of peri-collateral macrophage infiltration. In addition, quantitative RT-PCR analysis revealed that Ang-2 treatment decreased monocyte chemotactic protein-1 (MCP-1), platelet-derived growth factor-BB (PDGF-BB) mRNA levels in ischaemic adductor muscles. Ang-2 can lead to macrophage M1/M2 polarization shift inhibition in the ischaemic muscles. Furthermore, Ang-2 reduced the in vitro inflammatory response in macrophages and vascular cells involved in arteriogenesis. Conclusions Our results demonstrate that Ang-2 is essential for efficient arteriogenesis, which controls macrophage infiltration
    corecore