123 research outputs found

    The Assembly of Diverse Immune Receptors Is Focused on a Polar Membrane-Embedded Interaction Site

    Get PDF
    The majority of receptors responsible for activation of distinct cell types within the immune system assemble with dimeric signaling modules through interaction of a basic transmembrane residue with a pair of acidic residues of the signaling dimer. Because assembly of other membrane proteins requires specific interactions along extended stretches of transmembrane helices, we examined how transmembrane sequences flanking the polar interaction site contribute to assembly for three receptors that associate with different signaling modules—the natural killer cell receptors KIR and NKG2D and the Fc receptor for IgA, FcαRI. The KIR and NKG2D receptors assembled with the DAP12 and DAP10 dimers, respectively, even when the entire KIR or NKG2D transmembrane domains were replaced by polyleucine sequences with a properly positioned basic residue. In contrast, a high degree of specificity for the basic side chain could be observed because the KIR–DAP12 and FcαRI–Fcγ interactions favored lysine or arginine, respectively. Steric hindrance among incompatible extra-membranous domains and competition for signaling modules also contributed to specificity of assembly. These results demonstrate that these interactions are focused on the polar site created by three ionizable transmembrane residues, and explain how the DAP12 and Fcγ signaling modules can assemble with large, non-overlapping sets of receptors that have highly divergent transmembrane sequences

    Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3ɛ Cytoplasmic Tyrosine-Based Motif

    Get PDF
    SummaryMany immune system receptors signal through cytoplasmic tyrosine-based motifs (ITAMs), but how receptor ligation results in ITAM phosphorylation remains unknown. Live-cell imaging studies showed a close interaction of the CD3ɛ cytoplasmic domain of the T cell receptor (TCR) with the plasma membrane through fluorescence resonance energy transfer between a C-terminal fluorescent protein and a membrane fluorophore. Electrostatic interactions between basic CD3ɛ residues and acidic phospholipids enriched in the inner leaflet of the plasma membrane were required for binding. The nuclear magnetic resonance structure of the lipid-bound state of this cytoplasmic domain revealed deep insertion of the two key tyrosines into the hydrophobic core of the lipid bilayer. Receptor ligation thus needs to result in unbinding of the CD3ɛ ITAM from the membrane to render these tyrosines accessible to Src kinases. Sequestration of key tyrosines into the lipid bilayer represents a previously unrecognized mechanism for control of receptor activation
    corecore