4 research outputs found

    SoK: Cyber-Attack Taxonomy of Distributed Ledger- and Legacy Systems-based Financial Infrastructures

    Get PDF
    Nowadays, virtually all products and services offered by financial institutions are backed by technology. While the frontend banking services seem to be simple, the core-banking backend systems and architecture are complex and often based on legacy technologies. Customer-facing applications and services are evolving rapidly, yet they have data dependencies on core banking systems running on ancient technology standards. While those legacy systems are preferred for their stability, reliability, availability, and security properties, in adapting the frontends and services many security and privacy issues can occur. Clearly, this issues are arising as those systems have been designed decades ago, without considering the enormous amounts of data that they are required to handle and also considering different threat scenarios. Moreover, the trend towards using new technologies such as Distributed Ledger Technologies (DLT) has also emerged in the financial sector. As the nodes in DLT systems are decentralized, additional security threats come to light. The focus of this work is the security of financial technologies in the FinTech domain. We provide relevant categorization and taxonomies for a better understanding of the main cyber-attack types, and suitable countermeasures. Our findings are supported by using security-by-design principles for some selected critical financial use-cases, and include a detailed discussion of the resulting threats, attack vectors and security recommendations

    Follow the trail: machine learning for fraud detection in Fintech applications

    No full text
    Financial technology, or Fintech, represents an emerging industry on the global market. With online transactions on the rise, the use of IT for automation of financial services is of increasing importance. Fintech enables institutions to deliver services to customers worldwide on a 24/7 basis. Its services are often easy to access and enable customers to perform transactions in real-time. In fact, advantages such as these make Fintech increasingly popular among clients. However, since Fintech transactions are made up of information, ensuring security becomes a critical issue. Vulnerabilities in such systems leave them exposed to fraudulent acts, which cause severe damage to clients and providers alike. For this reason, techniques from the area of Machine Learning (ML) are applied to identify anomalies in Fintech applications. They target suspicious activity in financial datasets and generate models in order to anticipate future frauds. We contribute to this important issue and provide an evaluation on anomaly detection methods for this matter. Experiments were conducted on several fraudulent datasets from real-world and synthetic databases, respectively. The obtained results confirm that ML methods contribute to fraud detection with varying success. Therefore, we discuss the effectiveness of the individual methods with regard to the detection rate. In addition, we provide an analysis on the influence of selected features on their performance. Finally, we discuss the impact of the observed results for the security of Fintech applications in the future
    corecore