68 research outputs found

    Komorbiditäten bei chronisch-obstruktiven Lungenerkrankungen

    Get PDF

    Komorbiditäten bei chronisch-obstruktiven Lungenerkrankungen

    Get PDF

    Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney.

    Get PDF
    The transcription factor HNF1B, encoded by the TCF2 gene, plays an important role in the organogenesis of vertebrates. In humans, heterozygous mutations of HNF1B are associated with several diseases, such as pancreatic β-cell dysfunction leading to maturity-onset diabetes of the young (MODY5), defective kidney development, disturbed liver function, pancreas atrophy, and malformations of the genital tract. The African claw frog Xenopus laevis is an excellent model to study the processes involved in embryogenesis and organogenesis, as it can be manipulated easily with a series of methods. In the present study, we overexpressed HNF1β mutants in the developing Xenopus embryo to assess their roles during organogenesis, particularly in the developing pronephric kidney. Towards this goal, we developed a heat-shock inducible binary Cre/loxP system with activator and effector strains. Heat-shock activation of the mutant HNF1B variants P328L329del and A263insGG resulted in malformations of various organs and the affected larvae developed large edemas. Defects in the pronephros were primarily confined to malformed proximal tubules. Furthermore, the expression of the proximal tubule marker genes tmem27 and slc3a1, both involved in amino acid transport, was affected. Both P328L329del and A263insGG downregulated expression of slc3a1. In addition, P328L329del reduced tmem27 expression while A263insGG overexpression decreased expression of the chloride channel clcnk and the transcription factor pax2. Overexpression of two mutant HNF1B derivatives resulted in distinct phenotypes reflected by either a reduction or an enlargement of pronephros size. The expression of selected pronephric marker genes was differentially affected upon overexpression of HNF1B mutations. Based on our findings, we postulate that HNF1B mutations influence gene regulation upon overexpression in specific and distinct manners. Furthermore, our study demonstrates that the newly established Cre/loxP system for Xenopus embryos is an attractive alternative to examine the gene regulatory potential of transcription factors in developing pronephric kidney as exemplified here for HNF1B

    Systemic inflammation and pro-inflammatory cytokine profile predict response to checkpoint inhibitor treatment in NSCLC: a prospective study

    Get PDF
    Treatment with single agent immune checkpoint inhibitors (ICIs) has tremendously changed second line therapy in NSCLC. However, there are still no reliable biomarkers predicting response and survival in this group of patients. PD-L1 revealed to be a correlating, but no perfect marker. Therefore, we sought to investigate in this prospective study, whether inflammation status and cytokine profile could serve as additional biomarkers guiding treatment decision for single agent ICIs in NSCLC. 29 stage IV NSCLC patients receiving single agent PD-1 checkpoint-inhibitor in second line were prospectively enrolled. Inflammatory scores and cytokine profiles (IL-6, IL-8, IL-10, IFN-γ and TNFα) have been obtained before treatment and at the time of the first staging. Cytokine profiles were correlated with response and survival. Patients with signs of pre-therapeutic inflammation (elevated, NLR, SII, IL-6, IL-8) showed significantly lower response to ICI treatment and reduced PFS. Contrary, elevated levels of IFN-γ revealed to characterize a subgroup of patients, who significantly benefits from ICI treatment. Furthermore, low systemic inflammation and high levels of IFN-γ characterized patients with long term-response to ICI treatment. Pre-therapeutic assessment of inflammation and cytokine profiles has the ability to predict response and survival in NSCLC patients treated with single agent ICIs

    Health-related quality of life associates with change in FEV1 in COPD: results from the COSYCONET cohort

    Get PDF
    BackgroundForced expiratory volume in one second (FEV1) characterizes the pathophysiology of COPD and different trajectories of FEV1 decline have been observed in patients with COPD (e.g. gradual or episodic). There is limited information about the development of patient-reported health-related quality of life (HRQL) over the full range of the natural history of COPD. We examined the longitudinal association between change in FEV1 and change in disease-specific and generic HRQL.MethodsWe analysed data of 1734 patients with COPD participating in the COSYCONET cohort with up to 3 years of follow-up. Patients completed the Saint George's Respiratory Questionnaire (SGRQ) and the EQ-5D Visual Analog Scale (EQ VAS). Change score models were used to investigate the relationship between HRQL and FEV1 and to calculate mean changes in HRQL per FEV1 change categories [decrease (= 100ml)] after 3 years. Applying hierarchical linear models (HLM), we estimated the cross-sectional between-subject difference and the longitudinal within-subject change of HRQL as related to a FEV1 difference or change.ResultsWe observed a statistically significant deterioration in SGRQ (total score+1.3units) after 3 years, which was completely driven by the activity component (+4units). No significant change was found for the generic EQ VAS. Over the same period, 58% of patients experienced a decrease in FEV1, 28% were recorded as no change in FEV1, and 13% experienced an increase. The relationship between HRQL and FEV1 was found to be approximately linear with decrease in FEV1 being statistically significantly associated with a deterioration in SGRQ (+3.20units). Increase in FEV1 was associated with improvements in SGRQ (-3.81units). The associations between change in FEV1 and the EQ VAS were similar. Results of the HLMs were consistent and highly statistically significant, indicating cross-sectional and longitudinal associations. The largest estimates were found for the association between FEV1 and the SGRQ activity domain.ConclusionsDifference and change in FEV1 over time correlate with difference and change in disease-specific and generic HRQL. We conclude, that deterioration of HRQL should induce timely re-examination of physical status and lung function and possibly reassessment of therapeutic regimes.Trial registrationNCT01245933. Date of registration: 18 November 2010

    Prediction of air trapping or pulmonary hyperinflation by forced spirometry in COPD patients: results from COSYCONET

    Get PDF
    Background: Air trapping and lung hyperinflation are major determinants of prognosis and response to therapy in chronic obstructive pulmonary disease (COPD). They are often determined by body plethysmography, which has limited availability, and so the question arises as to what extent they can be estimated via spirometry. Methods: We used data from visits 1–5 of the COPD cohort COSYCONET. Predictive parameters were derived from visit 1 data, while visit 2–5 data was used to assess reproducibility. Pooled data then yielded prediction models including sex, age, height, and body mass index as covariates. Hyperinflation was defined as ratio of residual volume (RV) to total lung capacity (TLC) above the upper limit of normal. (ClinicalTrials.gov identifier: NCT01245933). Results: Visit 1 data from 1988 patients (Global Initiative for Chronic Obstructive Lung Disease grades 1–4, n=187, 847, 766, 188, respectively) were available for analysis (n=1231 males, 757 females; mean±SD age 65.1±8.4 years; forced expiratory volume in 1 s (FEV1) 53.1±18.4 % predicted (% pred); forced vital capacity (FVC) 78.8±18.8 % pred; RV/TLC 0.547±0.107). In total, 7157 datasets were analysed. Among measures of hyperinflation, RV/TLC showed the closest relationship to FEV1 % pred and FVC % pred, which were sufficient for prediction. Their relationship to RV/TLC could be depicted in nomograms. Even when neglecting covariates, hyperinflation was predicted by FEV1 % pred, FVC % pred or their combination with an area under the curve of 0.870, 0.864 and 0.889, respectively. Conclusions: The degree of air trapping/hyperinflation in terms of RV/TLC can be estimated in a simple manner from forced spirometry, with an accuracy sufficient for inferring the presence of hyperinflation. This may be useful for clinical settings, where body plethysmography is not available

    Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach

    Get PDF
    Background: Recent investigations showed single associations between uric acid levels, functional parameters, exacerbations and mortality in COPD patients. The aim of this study was to describe the role of uric acid within the network of multiple relationships between function, exacerbation and comorbidities. Methods: We used baseline data from the German COPD cohort COSYCONET which were evaluated by standard multiple regression analyses as well as path analysis to quantify the network of relations between parameters, particularly uric acid. Results: Data from 1966 patients were analyzed. Uric acid was significantly associated with reduced FEV1, reduced 6-MWD, higher burden of exacerbations (GOLD criteria) and cardiovascular comorbidities, in addition to risk factors such as BMI and packyears. These associations remained significant after taking into account their multiple interdependences. Compared to uric acid levels the diagnosis of hyperuricemia and its medication played a minor role. Conclusion: Within the limits of a cross-sectional approach, our results strongly suggest that uric acid is a biomarker of high impact in COPD and plays a genuine role for relevant outcomes such as physical capacity and exacerbations. These findings suggest that more attention should be paid to uric acid in the evaluation of COPD disease status

    Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD

    Get PDF
    Background: COPD influences cardiac function and morphology. Changes of the electrical heart axes have been largely attributed to a supposed increased right heart load in the past, whereas a potential involvement of the left heart has not been sufficiently addressed. It is not known to which extent these alterations are due to changes in lung function parameters. We therefore quantified the relationship between airway obstruction, lung hyperinflation, several echo- and electrocardiographic parameters on the orientation of the electrocardiographic (ECG) P, QRS and T wave axis in COPD. Methods: Data from the COPD cohort COSYCONET were analyzed, using forced expiratory volume in 1 s (FEV1), functional residual capacity (FRC), left ventricular (LV) mass, and ECG data. Results: One thousand, one hundred and ninety-five patients fulfilled the inclusion criteria (mean ± SD age: 63.9 ± 8.4 years; GOLD 0–4: 175/107/468/363/82). Left ventricular (LV) mass decreased from GOLD grades 1–4 (p = 0.002), whereas no differences in right ventricular wall thickness were observed. All three ECG axes were significantly associated with FEV1 and FRC. The QRS axes according to GOLD grades 0–4 were (mean ± SD): 26.2° ± 37.5°, 27.0° ± 37.7°, 31.7° ± 42.5°, 46.6° ± 42.2°, 47.4° ± 49.4°. Effects of lung function resulted in a clockwise rotation of the axes by 25°-30° in COPD with severe airway disease. There were additional associations with BMI, diastolic blood pressure, RR interval, QT duration and LV mass. Conclusion: Significant clockwise rotations of the electrical axes as a function of airway obstruction and lung hyperinflation were shown. The changes are likely to result from both a change of the anatomical orientation of the heart within the thoracic cavity and a reduced LV mass in COPD. The influences on the electrical axes reach an extent that could bias the ECG interpretation. The magnitude of lung function impairment should be taken into account to uncover other cardiac disease and to prevent misdiagnosis

    Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD

    Get PDF
    BackgroundCOPD influences cardiac function and morphology. Changes of the electrical heart axes have been largely attributed to a supposed increased right heart load in the past, whereas a potential involvement of the left heart has not been sufficiently addressed. It is not known to which extent these alterations are due to changes in lung function parameters. We therefore quantified the relationship between airway obstruction, lung hyperinflation, several echo- and electrocardiographic parameters on the orientation of the electrocardiographic (ECG) P, QRS and T wave axis in COPD.MethodsData from the COPD cohort COSYCONET were analyzed, using forced expiratory volume in 1s (FEV1), functional residual capacity (FRC), left ventricular (LV) mass, and ECG data.ResultsOne thousand, one hundred and ninety-five patients fulfilled the inclusion criteria (meanSD age: 63.9 +/- 8.4years;GOLD 0-4: 175/107/468/363/82). Left ventricular (LV) mass decreased from GOLD grades 1-4 (p=0.002), whereas no differences in right ventricular wall thickness were observed. All three ECG axes were significantly associated with FEV1 and FRC. The QRS axes according to GOLD grades 0-4 were (mean +/- SD): 26.2 degrees +/- 37.5 degrees, 27.0 degrees +/- 37.7 degrees, 31.7 degrees +/- 42.5 degrees, 46.6 degrees +/- 42.2 degrees, 47.4 degrees +/- 49.4 degrees. Effects of lung function resulted in a clockwise rotation of the axes by 25 degrees-30 degrees in COPD with severe airway disease. There were additional associations with BMI, diastolic blood pressure, RR interval, QT duration and LV mass.Conclusion Significant clockwise rotations of the electrical axes as a function of airway obstruction and lung hyperinflation were shown. The changes are likely to result from both a change of the anatomical orientation of the heart within the thoracic cavity and a reduced LV mass in COPD. The influences on the electrical axes reach an extent that could bias the ECG interpretation. The magnitude of lung function impairment should be taken into account to uncover other cardiac disease and to prevent misdiagnosis

    A new approach for the detection of obesity-related airway obstruction in lung-healthy individuals

    Full text link
    BACKGROUND Subjects with obesity show an increased prevalence of airway obstruction but it is not clear in each case whether this reflects genuine lung disease. Via intentional increase in end-expiratory lung volume we studied the detection of obesity-induced airway obstruction in lung-healthy obese subjects. METHODS The primary study population comprised 66 lung-healthy obese subjects and 23 normal weight subjects. Measurements were performed in a body plethysmograph allowing for recording and quantification of breathing loops in terms of specific airway resistance at both normal and intentionally elevated end-expiratory lung volume. The change in volume was documented by a shutter maneuver. RESULTS The voluntary increase of lung volume led to a significant reduction of expiratory airway resistance in 11 of the 66 obese subjects. This reduction could be quantified by a change of total expiratory resistance (sRtEX) of >1 kPa*s but was also clearly visible in the breathing loops. sRtEX showed the largest change among all resistance parameters. The loops of normal weight subjects remained virtually unaffected by the change in lung volume. Moreover, those of 5 obese patients with COPD who were measured for comparison partially showed a reduction of resistance but airway obstruction remained. CONCLUSION The proposed breathing maneuver was simple to perform and allowed for a quantitative and qualitative detection of obesity-induced airway obstruction. This might help in reducing the likelihood of misdiagnosis and overtreatment of obese patients
    • …
    corecore