16,608 research outputs found

    Why Do Leaders Matter? The Role of Expert Knowledge

    Get PDF
    Why do some leaders succeed while others fail? This question is important, but its complexity makes it hard to study systematically. We draw on a setting where there are well-defined objectives, small teams of workers, and exact measures of leaders’ characteristics and organizational performance. We show that a strong predictor of a leader’s success in year T is that person’s own level of attainment, in the underlying activity, in approximately year T-20. Our data come from 15,000 professional basketball games and reveal that former star players make the best coaches. This ‘expert knowledge’ effect is large

    Why Do Leaders Matter? The Role of Expert Knowledge

    Get PDF
    Why do some leaders succeed while others fail? This question is important, but its complexity makes it hard to study systematically. We examine an industry in which there are well-defined objectives, small teams, and exact measures of leaders’ characteristics. We show that a strong predictor of a leader’s success in year T is that person’s own level of attainment, in the underlying activity, in approximately year T-20. Our data come from 15,000 professional basketball games. The effect on team performance of the coach’s ‘expert knowledge’ is large and is discernible in the data within 12 months of his being hired.organizational performance, firms, leadership, fixed-effects, productivity

    Matrix product states approach to the Heisenberg ferrimagnetic spin chains

    Full text link
    We propose a new version of the matrix product (MP) states approach to the description of quantum spin chains, which allows one to construct MP states with certain total spin and its z-projection. We show that previously known MP wavefunctions for integer-spin antiferromagnetic chains and ladders correspond to some particular cases of our general ansatz. Our method allows to describe systems with spontaneously broken rotational symmetry, like quantum ferrimagnetic chains whose ground state has nonzero total spin. We apply this approach to describe the ground state properties of the isotropic ferrimagnetic Heisenberg chain with alternating spins 1 and 1/2 and compare our variational results with the high-precision numerical data obtained by means of the quantum Monte Carlo (QMC) method. For both the ground state energy and the correlation functions we obtain very good agreement between the variational results and the QMC data.Comment: 4 pages, RevTeX, uses psfig.sty, submitted to Phys. Rev.

    Effects of specimen resonances on acoustic-ultrasonic testing

    Get PDF
    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level

    Full text link
    The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier is analyzed using weak-chemisorption theory. The electronic structure of the uncoupled PTCDA molecule and of the metal surface is calculated. Then, the induced density of interface states is obtained as a function of these two electronic structures and the interaction between both systems. This induced density of states is found to be large enough (even if the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital. We conclude that the metal/PTCDA interface molecular level alignment is due to the electrostatic dipole created by the charge transfer between the two solids.Comment: 6 page

    Magnetic phase diagram of a frustrated ferrimagnetic ladder: Relation to the one-dimensional boson Hubbard model

    Full text link
    We study the magnetic phase diagram of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains as a function of the frustration parameter related to diagonal exchange couplings. The analysis is performed by using spin-wave series and exact numerical diagonalization techniques. The obtained phase diagram--containing the Luttinger liquid phase, the plateau phase with a magnetization per rung M=1/2M=1/2, and the fully polarized phase--is closely related to the generic (J/U,μ/U)(J/U,\mu/U) phase diagram of the one-dimensional boson Hubbard model.Comment: 4 pages, 2 figure

    A multiple replica approach to simulate reactive trajectories

    Full text link
    A method to generate reactive trajectories, namely equilibrium trajectories leaving a metastable state and ending in another one is proposed. The algorithm is based on simulating in parallel many copies of the system, and selecting the replicas which have reached the highest values along a chosen one-dimensional reaction coordinate. This reaction coordinate does not need to precisely describe all the metastabilities of the system for the method to give reliable results. An extension of the algorithm to compute transition times from one metastable state to another one is also presented. We demonstrate the interest of the method on two simple cases: a one-dimensional two-well potential and a two-dimensional potential exhibiting two channels to pass from one metastable state to another one
    corecore