897 research outputs found

    Distributed science operations for JPL planetary missions

    Get PDF
    Advances in spacecraft, flight instruments, and ground systems provide an impetus and an opportunity for scientific investigation teams to take direct control of their instruments' operations and data collection while at the same time, providing a cost effective and flexible approach in support of increasingly complex science missions. Operations of science instruments have generally been integrated into planetary flight and ground systems at a very detailed level. That approach has been successful, but the cost of incorporating instrument expertise into the central mission operations system has been high. This paper discusses an approach to simplify planetary science operations by distributing instrument computing and data management tasks from the central mission operations system to each investigator's home center of observational expertise. Some early results of this operations concept will be presented based on the Mars Observer (MO) Project experience and Cassini Project plans

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa

    Association of spirochetal infection with Morgellons disease

    Get PDF
    Morgellons disease (MD) is an emerging multisystem illness characterized by skin lesions with unusual filaments embedded in or projecting from epithelial tissue. Filament formation results from abnormal keratin and collagen expression by epithelial-based keratinocytes and fibroblasts. Recent research comparing MD to bovine digital dermatitis, an animal infectious disease with similar skin features, provided clues that spirochetal infection could play an important role in the human disease as it does in the animal illness. Based on histological staining, immunofluorescent staining, electron microscopic imaging and polymerase chain reaction, we report the detection of Borrelia spirochetes in dermatological tissue of four randomly-selected MD patients. The association of MD with spirochetal infection provides evidence that this infection may be a significant factor in the illness and refutes claims that MD lesions are self-inflicted and that people suffering from this disorder are delusional. Molecular characterization of the Borrelia spirochetes found in MD patients is warranted

    Scenario planning for the Edinburgh city region

    Get PDF
    This paper examines the application of scenario planning techniques to the detailed and daunting challenge of city re-positioning when policy makers are faced with a heavy history and a complex future context. It reviews a process of scenario planning undertaken in the Edinburgh city region, exploring the scenario process and its contribution to strategies and policies for city repositioning. Strongly rooted in the recent literature on urban and regional economic development, the text outlines how key individuals and organisations involved in the process participated in far-reaching analyses of the possible future worlds in which the Edinburgh city region might find itself

    Update and Next Steps for Real-World Translation of Interventions for Type 2 Diabetes Prevention: Reflections From a Diabetes Care Editors’ Expert Forum

    Get PDF
    The International Diabetes Federation estimates that 415 million adults worldwide now have diabetes and 318 million have impaired glucose tolerance. These numbers are expected to increase to 642 million and 482 million, respectively, by 2040. This burgeoning pandemic places an enormous burden on countries worldwide, particularly resource-poor regions. Numerous landmark trials evaluating both intensive lifestyle modification and pharmacological interventions have persuasively demonstrated that type 2 diabetes can be prevented or its onset can be delayed in high-risk individuals with impaired glucose tolerance. However, key challenges remain, including how to scale up such approaches for widespread translation and implementation, how to select appropriately from various interventions and tailor them for different populations and settings, and how to ensure that preventive interventions yield clinically meaningful, cost-effective outcomes. In June 2015, a Diabetes Care Editors’ Expert Forum convened to discuss these issues. This article, an outgrowth of the forum, begins with a summary of seminal prevention trials, followed by a discussion of considerations for selecting appropriate populations for intervention and the clinical implications of the various diagnostic criteria for prediabetes. The authors outline knowledge gaps in need of elucidation and explore a possible new avenue for securing regulatory approval of a prevention-related indication for metformin, as well as specific considerations for future pharmacological interventions to delay the onset of type 2 diabetes. They conclude with descriptions of some innovative, pragmatic translational initiatives already under way around the world

    Laboratory Measurement and Theoretical Modeling of K-shell X-ray Lines from Inner-shell Excited and Ionized Ions of Oxygen

    Full text link
    We present high resolution laboratory spectra of K-shell X-ray lines from inner-shell excited and ionized ions of oxygen, obtained with a reflection grating spectrometer on the electron beam ion trap (EBIT-I) at the Lawrence Livermore National Laboratory. Only with a multi-ion model including all major atomic collisional and radiative processes, are we able to identify the observed K-shell transitions of oxygen ions from \ion{O}{3} to \ion{O}{6}. The wavelengths and associated errors for some of the strongest transitions are given, taking into account both the experimental and modeling uncertainties. The present data should be useful in identifying the absorption features present in astrophysical sources, such as active galactic nuclei and X-ray binaries. They are also useful in providing benchmarks for the testing of theoretical atomic structure calculations.Comment: 17 pages, 2 figures, to appear in Ap

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page
    • …
    corecore