7 research outputs found

    Genome-Driven Discovery of Hygrocins in <i>Streptomyces rapamycinicus</i>

    No full text
    Ansamycins, represented by the antituberculosis drug rifamycin, are an important family of natural products. To obtain new ansamycins, Streptomyces rapamycinicus IMET 43975 harboring an ansamycin biosynthetic gene cluster was fermented in a 50 L scale, and subsequent purification work led to the isolation of five known and four new analogues, where hygrocin W (2) belongs to benzoquinonoid ansamycins, and the other three hygrocins, hygrocins X-Z (6-8), are new seco-hygrocins. The structures of ansamycins (1-8) were determined by the analysis of spectroscopic (1D/2D NMR and ECD) and MS spectrometric data. The Baeyer-Villiger enzyme which catalyzed the ester formation in the ansa-ring was confirmed through in vivo CRISPR base editing. The discovery of these compounds further enriches the structural diversity of ansamycins

    Chemical and Antiplasmodial Investigations on <i>Eremophila</i>-Derived Alkaloids and Semisynthetic Ether Analogues

    No full text
    Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3–12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1–12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 μM against Plasmodium falciparum 3D7 (drug-sensitive) strain

    Chemical and Antiplasmodial Investigations on <i>Eremophila</i>-Derived Alkaloids and Semisynthetic Ether Analogues

    No full text
    Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3–12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1–12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 μM against Plasmodium falciparum 3D7 (drug-sensitive) strain

    Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V

    No full text
    A long-term antibacterial activity of implants without compromising their biocompatibility is highly desirable to minimize the biomaterial-associated infections. Although tantalum oxide nanotubes (Ta2O5 NTs) are promising coating materials for orthodontics and orthopedics applications, their insufficient antibacterial activity retains vulnerability to post-implantation infections. This study aimed to endow antibacterial characteristics to the Ta2O5 NTs-coated Ti6Al4V substrates by decoration of silver oxide nanoparticles (Ag2O NPs). The well-adherent Ta2O5 NTs were grown via anodization of a pure tantalum (Ta) layer coated by physical vapor deposition (PVD) on the Ti6Al4V substrates. The Ag2O NPs were then decorated on the edges and walls of nanotubes through a secondary PVD under controlled conditions. The silver oxide nanoparticles-decorated tantala nanotubes (Ag2O NPs-decorated Ta2O5 NTs) promoted the formation of bone-like apatite layer and significantly reduced the viability of Escherichia coli (E. coli) cells. The prepared coating also increased the density and spreading of osteoblast cells in comparison to bare substrate. These results suggest that decorating the Ta2O5 NTs with Ag2O nanoparticles could improve antibacterial activity and the osseointegration of Ti6Al4V implants

    Dysidenin from the Marine Sponge <i>Citronia</i> sp. Affects the Motility and Morphology of <i>Haemonchus contortus</i> Larvae In Vitro

    No full text
    High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides

    High Throughput Screening of the NatureBank ‘Marine Collection’ in a Haemonchus Bioassay Identifies Anthelmintic Activity in Extracts from a Range of Sponges from Australian Waters

    No full text
    Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature—which assume a diverse ‘chemical space’—have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber’s pole worm (Haemonchus contortus)—an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall ‘hit rate’ of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced ‘non-wild-type’ (abnormal) larval phenotypes with reference to ‘wild-type’ (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein
    corecore