2,972 research outputs found

    Strong damping of phononic heat current by magnetic excitations in SrCu_2(BO_3)_2

    Full text link
    Measurements of the thermal conductivity as a function of temperature and magnetic field in the 2D dimer spin system SrCu2_2(BO3_3)2_2 are presented. In zero magnetic field the thermal conductivity along and perpendicular to the magnetic planes shows a pronounced double-peak structure as a function of temperature. The low-temperature maximum is drastically suppressed with increasing magnetic field. Our quantitative analysis reveals that the heat current is due to phonons and that the double-peak structure arises from pronounced resonant scattering of phonons by magnetic excitations.Comment: a bit more than 4 pages, 2 figures included; minor changes to improve the clarity of the presentatio

    Instability of isolated triplet excitations on the Shastry-Sutherland lattice (SSL)

    Full text link
    Configurations of singlets and triplets on the SSL have been proposed in the literature as variational ground states of the Shastry-Sutherland model at fixed magnetization M. We prove, that isolated triplet excitations on the SSL are unstable if the coupling alpha falls below a critical value alpha_c=2.0 (approx.). The instability should be visible in the compound SrCu_2(BO_3)_2 where a coupling alpha^*=1.48 is realized.Comment: 4 pages, 4 figures, RevTe

    Far infrared study of the two dimensional dimer spin system SrCu_2(BO_3)_2

    Full text link
    Using far-infrared spectroscopy in magnetic fields up to 12T we have studied a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several infrared active modes in the dimerized state (below 10K) in the frequency range from 3 to 100cm^-1. The measured splitting from the ground state to the excited triplet M_S=0 sublevel is Delta_1=24.2cm^-1 and the other two triplet state sublevels in zero magnetic field are 1.4cm^-1 below and above the M_S=0 sublevel. Another multiplet is at Delta_2=37.6cm^-1 from the ground state. A strong electric dipole active transition polarized in the (ab)-plane is activated in the dimer spin system below 15K at 52cm^-1.Comment: 4 pages including 5 figures, submitted to PRB, instrumental arte facts remove

    Heat transport in SrCu_2(BO_3)_2 and CuGeO_3

    Full text link
    In the low dimensional spin systems SrCu2(BO3)2SrCu_2(BO_3)_2 and CuGeO3CuGeO_3 the thermal conductivities along different crystal directions show pronounced double-peak structures and strongly depend on magnetic fields. For SrCu2(BO3)2SrCu_2(BO_3)_2 the experimental data can be described by a purely phononic heat current and resonant scattering of phonons by magnetic excitations. A similar effect seems to be important in CuGeO3CuGeO_3, too but, in addition, a magnetic contribution to the heat transport may be present.Comment: 4 pages, 2 figures; appears in the proceedings of the SCES2001 (Physica B

    Field-Induced Order and Magnetization Plateaux in Frustrated Antiferromagnets

    Full text link
    We argue that collinearly ordered states which exist in strongly frustrated spin systems for special rational values of the magnetization are stabilized by thermal as well as quantum fluctuations. These general predictions are tested by Monte Carlo simulations for the classical and Lanczos diagonalization for the S=1/2 frustrated square-lattice antiferromagnet.Comment: 4 pages, 2 PostScript figures included; to appear in the proceedings of SCES2001, Ann Arbor, August 6-10, 2001 (Physica B

    Magnetic frustration in a stoichiometric spin-chain compound, Ca3_3CoIrO6_6

    Get PDF
    The temperature dependent ac and dc magnetization and heat capacity data of Ca3_3CoIrO6_6, a spin-chain compound crystallizing in a K4_4CdCl6_6-derived rhombohedral structure, show the features due to magnetic ordering of a frustrated-type below about 30 K, however without exhibiting the signatures of the so-called "partially disordered antiferromagnetic structure" encountered in the isostructural compounds, Ca3_3Co2_2O6_6 and Ca3_3CoRhO6_6. This class of compounds thus provides a variety for probing the consequences of magnetic frustration due to topological reasons in stoichiometric spin-chain materials, presumably arising from subtle differences in the interchain and intrachain magnetic coupling strengths. This compound presents additional interesting situations in the sense that, ac susceptibility exhibits a large frequency dependence in the vicinity of 30 K uncharacteristic of conventional spin-glasses, with this frustrated magnetic state being robust to the application of external magnetic fields.Comment: Physical Review (Rapid Communications), in pres

    X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu2_2(BO3_3)2_2 System

    Full text link
    X-band ESR measurements on a single crystal of SrCu2_2(BO3_3)2_2 system in a temperature range between 10 K and 580 K are presented. The temperature and angular dependence of unusually broad ESR spectra can be explained by the inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields by far the largest contribution to the linewidth. However, the well-accepted picture of only out-of-plane interdimer DM vectors is not sufficient for explanation of the observed angular dependence. In order to account for the experimental linewidth anisotropy we had to include sizable in-plane components of interdimer as well as intradimer DM interaction in addition to the out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that above the structural phase transition occurring at 395 K dynamical mechanism should be present allowing for instantaneous DM interactions. Moreover, the linewidth at an arbitrary temperature can be divided into two contributions; namely, the first part arising from spin dynamics governed by the spin Hamiltonian of the system and the second part due to significant spin-phonon coupling. The nature of the latter mechanism is attributed to phonon-modulation of the antisymmetric interaction, which is responsible for the observed linear increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR
    • …
    corecore