7,916 research outputs found

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Condensation and vortex formation in Bose-gas upon cooling

    Get PDF
    The mechanism for the transition of a Bose gas to the superfluid state via thermal fluctuations is considered. It is shown that in the process of external cooling some critical fluctuations (instantons) are formed above the critical temperature. The probability of the instanton formation is calculated in the three and two-dimensional cases. It is found that this probability increases as the system approaches the transition temperature. It is shown that the evolution of an individual instanton is impossible without the formation of vortices in its superfluid part

    Small-scale phase separation in doped anisotropic antiferromagnets

    Full text link
    We analyze the possibility of the nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favorable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend only upon two universal parameters Jˉ=(Jx+Jy+Jz)S2\bar{J} =(J_x + J_y + J_z)S^2 and teff=(txtytz)1/3t_{eff} =(t_xt_yt_z)^{1/3}, where Jˉ\bar{J} and tefft_{eff} are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case, these parameters have the form Jˉ=(Jx+Jy)S2\bar{J} =(J_x + J_y)S^2 and teff=(txty)1/2t_{eff} =(t_xt_y)^{1/2}. The most favorable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case.Comment: 6 pages, 1 figure, RevTe

    Electro-diffusion in a plasma with two ion species

    Full text link
    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion (ICF) capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.Comment: Submitted to Phys. Plasmas on 2012-03-06 (revised version 05/13/2012

    Cold Collision Frequency Shift in Two-Dimensional Atomic Hydrogen

    Full text link
    We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid 4He at T<=90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta v_c = -1.0(1)x10^-7 Hz cm^-2 x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the 3D case.Comment: 4 pages, 3 figure

    On The Expected Photon Spectrum in B -> X_s + gamma and Its Uses

    Full text link
    Measuring the photon energy spectrum in radiative B decays provides essential help for gaining theoretical control over semileptonic B transitions. The hadronic recoil mass distribution in B -> X_u \ell\nu promises the best environment for determining |V_ub|. The theoretical uncertainties are largest in the domain of low values of the lepton pair mass q^2. Universality relations allow to describe this domain reliably in terms of the photon spectrum in B -> X_s + \gamma. A method is proposed to incorporate 1/m_b corrections into this relation. The low-E_\gamma tail in radiative decays is important in the context of extracting |V_ub|. We argue that CLEO's recent fit to the spectrum underestimates the fraction of the photon spectrum below 2 GeV. Potentially significant uncertainties enter in the theoretical evaluation of the integrated end-point lepton spectrum or the B -> X_u \ell\nu width with a too high value of the lower cut on q^2 in alternative approaches to |V_ub|.Comment: 24 pages, 6 figures, LaTeX. Revised: Complete version. Numerical predictions are improved and the estimate for the decay fraction revised. The theoretical expectations for the decay fraction and the spectrum itself are given on the plot

    Bound states of three and four resonantly interacting particles

    Full text link
    We present an exact diagrammatic approach for the problem of dimer-dimer scattering in 3D for dimers being a resonant bound state of two fermions in a spin-singlet state, with corresponding scattering length aFa_F. Applying this approach to the calculation of the dimer-dimer scattering length aBa_B, we recover exactly the already known result aB=0.60aFa_B=0.60 a_F. We use the developed approach to obtain new results in 2D for fermions as well as for bosons. Namely, we calculate bound state energies for three bbbbbb and four bbbbbbbb resonantly interacting bosons in 2D. For the case of resonant interaction between fermions and bosons we calculate exactly bound state energies of the following complexes: two bosons plus one fermion bbfbbf, two bosons plus two fermions bf↑bf↓bf_{\uparrow}bf_{\downarrow}, and three bosons plus one fermion bbbfbbbf.Comment: 10 pages, 9 figure

    Collective mode of homogeneous superfluid Fermi gases in the BEC-BCS crossover

    Full text link
    We perform a detailed study of the collective mode across the whole BEC-BCS crossover in fermionic gases at zero temperature, covering the whole range of energy beyond the linear regime. This is done on the basis of the dynamical BCS model. We recover first the results of the linear regime in a simple form. Then specific attention is payed to the non linear part of the dispersion relation and its interplay with the continuum of single fermionic excitations. In particular we consider in detail the merging of collective mode into the continuum of single fermionic excitations. This occurs not only on the BCS side of the crossover, but also slightly beyond unitarity on the BEC side. Another remarkable feature is the very linear behaviour of the dispersion relation in the vicinity of unitarity almost up to merging with the continuum. Finally, while on the BEC side the mode is quite analogous to the Bogoliubov mode, a difference appear at high wavevectors. On the basis of our results we determine the Landau critical velocity in the BEC-BCS crossover which is found to be largest close to unitarity. Our investigation has revealed interesting qualitative features which would deserve experimental exploration as well as further theoretical studies by more sophisticated means.Comment: 21 page
    • …
    corecore