19 research outputs found

    Biomimetic self-assembling copolymer-hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate

    Get PDF
    Citrate binds strongly to the surface of calcium phosphate (apatite) nanocrystals in bone and is thought to prevent crystal thickening. In this work, citrate added as a regulatory element enabled molecular control of the size and stability of hydroxyapatite (HAp) nanocrystals in synthetic nanocomposites, fabricated with self-assembling block copolymer templates. The decrease of the HAp crystal size within the polymer matrix with increasing citrate concentration was documented by solid-state nuclear magnetic resonance (NMR) techniques and wide-angle X-ray diffraction (XRD), while the shapes of HAp nanocrystals were determined by transmission electron microscopy (TEM). Advanced NMR techniques were used to characterize the interfacial species and reveal enhanced interactions between mineral and organic matrix, concomitant with the size effects. The surface-to-volume ratios determined by NMR spectroscopy and long-range 31P{1H} dipolar dephasing show that 2, 10, and 40 mM citrate changes the thicknesses of the HAp crystals from 4 nm without citrate to 2.9, 2.8, and 2.3 nm, respectively. With citrate concentrations comparable to those in body fluids, HAp nanocrystals of sizes and morphologies similar to those in avian and bovine bones have been produced

    A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages

    Get PDF
    To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals

    A solid-state NMR study of lead and vanadium substitution into hydroxyapatite

    No full text
    A systematic study on cationic and anionic substitution in hydroxyapatite structures was carried out, with the aim of understanding the impact of ion exchange on the crystalline structure and properties of these materials. Lead and vanadium were chosen for the exchange, due to their known effects on the redox and catalytic properties of hydroxypatites. Hydroxyapatites with variable Pb and V contents, Pb-x- Ca10-x(VO4)y(PO4)(6-y)(OH)(2) (x = 0, 2, 4, 6, 8 and 10 for y = 1; y = 0, 0.5, 1, 2, 3 and 6 for x = 10) were synthesized and characterized by NMR spectroscopy. Solid-state NMR allowed an analysis of the chemical environment of every ion after substitution into the hydroxyapatite network. Ca-43 and 207 Pb NMR spectra at different lead concentrations provided clear evidence of the preferential substitution of lead into the Ca(II) site, the replacement of the Ca(I) site starting at x = 4 for y = 1. Two NMR distinguishable Pb(I) sites were observed in Pb-10(PO4)(6)(OH)(2), which is compatible with the absence of a local mirror plane pi rpendicular to the c direction. In contrast with P-31 NMR, for which only small variations related to the incorporation of Pb are observed, the strong change in the V-51 NMR spectrum indicates that lead perturbs the vanadium environment more than the phosphorus one. The existence of a wide variety of environments for OH in substituted apatites, is revealed by H-1 NMR, and the mobility of the water molecules appears to vary upon introduction of lead into the structure
    corecore