2 research outputs found

    Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung

    Get PDF
    Introduction Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. Methods We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air–liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Results Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Conclusion Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo

    Packed red cell transfusions alter mesenteric arterial reactivity and nitric oxide pathway in preterm lambs

    No full text
    BACKGROUND: Cases of necrotizing enterocolitis occurring within 48 h of packed red blood cell (PRBC) transfusions are increasingly being described in observational studies. Transfusion-associated gut injury is speculated to result from an abnormal mesenteric vascular response to transfusion. However, the mechanism of disruption of the balance between mesenteric vasoconstriction and relaxation following transfusion is not known. METHODS: Preterm lambs (n = 16, 134 d gestation; term: 145–147 d) were delivered and ventilated for 24 h. All the lambs received orogastric feeds with colostrum. In addition, 10 of these lambs received PRBC transfusions. Vasoreactivity was evaluated in isolated mesenteric arterial rings using norepinephrine and endothelin-1 as vasoconstrictors. Endothelium-dependent (A23187, a calcium ionophore) and endothelium-independent (SNAP) nitric oxide (NO) donors were used as vasorelaxants. Mesenteric arterial endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase 5 (PDE5) mRNA analyses and protein assays were performed. RESULTS: Transfusion with PRBC significantly increased mesenteric vasoconstriction to norepinephrine and endothelin-1 and impaired relaxation to A23187 and SNAP. Mesenteric arterial eNOS protein decreased following PRBC transfusion. No significant changes were noted in sGC and PDE5 mRNA or protein assays. CONCLUSION: PRBC transfusion in enterally fed preterm lambs promotes mesenteric vasoconstriction and impairs vasorelaxation by reducing mesenteric arterial eNOS
    corecore