449 research outputs found

    Superbubbles

    Get PDF
    Individual massive stars with M sub bol -6 have huge stellar winds that create interstellar bubbles. Stars with masses greater than 8 solar mass are considered supernova progenitors. These massive stars are numerous in OB associations where few supernova remnants are detected. Model calculations describing the evolution of an association show: that large, hot cavities are formed by pushing the ambient gas into neutral shells; that the shell radii change with galactocentric radius; that only thirty percent of the interstellar medium is in the form of supercavities; and that a consequence is that only a small fraction of supernovae form supernova remnants

    Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA

    Get PDF
    Background: NF-κB/Rel transcription factors play important roles in immunity and development in mammals and insects. Their activity is regulated by their cellular localization, homo- and heterodimerization and association with other factors on their target gene promoters. Gambif1 fromAnopheles gambiae is a member of the Rel family and a close homologue of the morphogen Dorsal, which establishes dorsoventral polarity in theDrosophila embryo.Results: We present the crystal structure of the N-terminal specificity domain of Gambif1 bound to DNA. This first structure of an insect Rel protein–DNA complex shows that Gambif1 binds a GGG half-site element using a stack of three arginine sidechains. Differences in affinity to Dorsal binding sites in target gene promoters are predicted to arise from base changes in these GGG elements. An arginine that is conserved in class II Rel proteins (members of which contain a transcription activation domain) contacts the outermost guanines of the DNA site. This previously unseen specific contact contributes strongly to the DNA-binding affinity and might be responsible for differences in specificity between Rel proteins of class I and II.Conclusions: The Gambif1–DNA complex structure illustrates how differences in Dorsal affinity to binding sites in developmental gene promoters are achieved. Comparison with other Rel–DNA complex structures leads to a general model for DNA recognition by Rel proteins

    Contemporaneous IUE, EUVE, and High-Energy Observations of 3C 273

    Get PDF
    We present the results of our 1994 January and 1995 January observations of the quasar 3C 273 obtained with the International Ultraviolet Explorer (IUE) and the Extreme-Ultraviolet Explorer (EUVE). These observations were part of a large multiwavelength campaign to observe 3C 273 from radio through gamma-rays. Our 1995 January photometric observations with the EUVE Lexan/B Deep Survey (DS) instrument indicate strong evidence for variability, at a 99% confidence level, during the 12 day observing period. We have utilized ROSAT PSPC soft X-ray power-law models to correlate with EUVE count rates. Besides variations in the normalization level between both observations, our EUV count rates are consistent with a simple power-law model with spectral index alpha approx. 1.77 (F(sub upsilon) proportional to upsilon(sup -alpha) that can be extrapolated from the soft X-rays to the EUV range. The active galactic nucleus 3C 273 is an important blazar to study because in our picture it reveals the presence of both disk and relativistic beam spectral contributions

    Contemporaneous IUE, EUVE, and High-Energy Observations of 3C 273

    Get PDF
    We present the results of our 1994 January and 1995 January observations of the quasar 3C 273 obtained with the International Ultraviolet Explorer (IUE) and the Extreme-Ultraviolet Explorer (EUV E). These observations were part of a large multiwavelength campaign to observe 3C 273 from radio through γ-rays. Our 1995 January photometric observations with the EUV E Lexan/B Deep Survey (DS) instrument indicate strong evidence for variability, at a 99% confidence level, during the 12 day observing period. We have utilized ROSAT PSPC soft X-ray power-law models to correlate with EUV E count rates. Besides variations in the normalization level between both observations, our EUV count rates are consistent with a simple power-law model with spectral index α ~ 1.77 (Fv ~ v^-α) that can be extrapolated lated from the soft X-rays to the EUV range. The active galactic nucleus 3C 273 is an important blazar to study because in our picture it reveals the presence of both disk and relativistic beam spectral contributions

    Particle Acceleration and the Production of Relativistic Outflows in Advection-Dominated Accretion Disks with Shocks

    Full text link
    Relativistic outflows (jets) of matter are commonly observed from systems containing black holes. The strongest outflows occur in the radio-loud systems, in which the accretion disk is likely to have an advection-dominated structure. In these systems, it is clear that the binding energy of the accreting gas is emitted primarily in the form of particles rather than radiation. However, no comprehensive model for the disk structure and the associated outflows has yet been produced. In particular, none of the existing models establishes a direct physical connection between the presence of the outflows and the action of a microphysical acceleration mechanism operating in the disk. In this paper we explore the possibility that the relativistic protons powering the jet are accelerated at a standing, centrifugally-supported shock in the underlying accretion disk via the first-order Fermi mechanism. The theoretical analysis employed here parallels the early studies of cosmic-ray acceleration in supernova shock waves, and the particle acceleration and disk structure are treated in a coupled, self-consistent manner based on a rigorous mathematical approach. We find that first-order Fermi acceleration at standing shocks in advection-dominated disks proves to be a very efficient means for accelerating the jet particles. Using physical parameters appropriate for M87 and SgrA*, we verify that the jet kinetic luminosities computed using our model agree with estimates based on observations of the sources.Comment: accepted for publication in the Astrophysical Journa

    Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae

    Get PDF
    AbstractAnopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects

    Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    Full text link
    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \cite{PBM1} and Islam & Balbus \cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma \beta \gapprox 80. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.Comment: To appear in the proceedings of the first Kodai-Trieste workshop on Plasma Astrophysics (Aug 27-Sept 07 2007), Springer Astrophysics and Space Science Proceedings serie
    • …
    corecore