587 research outputs found

    Superbubbles

    Get PDF
    Individual massive stars with M sub bol -6 have huge stellar winds that create interstellar bubbles. Stars with masses greater than 8 solar mass are considered supernova progenitors. These massive stars are numerous in OB associations where few supernova remnants are detected. Model calculations describing the evolution of an association show: that large, hot cavities are formed by pushing the ambient gas into neutral shells; that the shell radii change with galactocentric radius; that only thirty percent of the interstellar medium is in the form of supercavities; and that a consequence is that only a small fraction of supernovae form supernova remnants

    Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA

    Get PDF
    Background: NF-κB/Rel transcription factors play important roles in immunity and development in mammals and insects. Their activity is regulated by their cellular localization, homo- and heterodimerization and association with other factors on their target gene promoters. Gambif1 fromAnopheles gambiae is a member of the Rel family and a close homologue of the morphogen Dorsal, which establishes dorsoventral polarity in theDrosophila embryo.Results: We present the crystal structure of the N-terminal specificity domain of Gambif1 bound to DNA. This first structure of an insect Rel protein–DNA complex shows that Gambif1 binds a GGG half-site element using a stack of three arginine sidechains. Differences in affinity to Dorsal binding sites in target gene promoters are predicted to arise from base changes in these GGG elements. An arginine that is conserved in class II Rel proteins (members of which contain a transcription activation domain) contacts the outermost guanines of the DNA site. This previously unseen specific contact contributes strongly to the DNA-binding affinity and might be responsible for differences in specificity between Rel proteins of class I and II.Conclusions: The Gambif1–DNA complex structure illustrates how differences in Dorsal affinity to binding sites in developmental gene promoters are achieved. Comparison with other Rel–DNA complex structures leads to a general model for DNA recognition by Rel proteins

    Moderate-Resolution Spectroscopy of the Lensed Quasar 2237+0305: A search for Ca ii Absorption Due to the Interstellar Medium in the Foreground Lensing Galaxy

    Get PDF
    The gravitational lens system 2237 + 0305 consists of a low-redshift barred spiral galaxy (z = 0.0394) centered on a more distant quasar (z = 1.695). Because the lensing galaxy is nearly face on, spectroscopy of the background quasar affords a unique opportunity to study the interstellar medium in the galaxy\u27s center and buW:. We report moderate-resolution spectroscopy of QS02237 + 0305 yielding a 3u upper limit of 72 rnA forthe rest equivalent width of Ca II K absorption d);le to gas in the intervening galaxy. Since gas in the Milky Way thick disk typically produces 220 mA Ca II lines along lines of sight at high galactic latitude, while our line of sight to QSO 2237 + 0305 is effectively the weighted mean of four lines of sight, each of which transects an entire halo diameter in the lensing galaxy rather than just a radius, our Ca II upper limit argues against the presence. of such a thick disk near the center of the lensing galaxy. Also, published studies indicate that at 8200 A, QSO 2237 + 0305 suffers roughly 0.5 mag of extinction due to the lensing galaxy. Assuming a normal gas-to-dust ratio and allowing for various sources of uncertainty, this absorption estimate combined with our Ca II Kupper limit implies that calcium is depleted with respect to hydrogen by at least 2.7-3.7 dex, compared to solar abundances. This depletion is similar to the more extreme cases seen in our own galaxy, and higher-dispersion observations may further decrease the upper limit on Ca II absorption

    Contemporaneous IUE, EUVE, and High-Energy Observations of 3C 273

    Get PDF
    We present the results of our 1994 January and 1995 January observations of the quasar 3C 273 obtained with the International Ultraviolet Explorer (IUE) and the Extreme-Ultraviolet Explorer (EUVE). These observations were part of a large multiwavelength campaign to observe 3C 273 from radio through gamma-rays. Our 1995 January photometric observations with the EUVE Lexan/B Deep Survey (DS) instrument indicate strong evidence for variability, at a 99% confidence level, during the 12 day observing period. We have utilized ROSAT PSPC soft X-ray power-law models to correlate with EUVE count rates. Besides variations in the normalization level between both observations, our EUV count rates are consistent with a simple power-law model with spectral index alpha approx. 1.77 (F(sub upsilon) proportional to upsilon(sup -alpha) that can be extrapolated from the soft X-rays to the EUV range. The active galactic nucleus 3C 273 is an important blazar to study because in our picture it reveals the presence of both disk and relativistic beam spectral contributions

    Contemporaneous IUE, EUVE, and High-Energy Observations of 3C 273

    Get PDF
    We present the results of our 1994 January and 1995 January observations of the quasar 3C 273 obtained with the International Ultraviolet Explorer (IUE) and the Extreme-Ultraviolet Explorer (EUV E). These observations were part of a large multiwavelength campaign to observe 3C 273 from radio through γ-rays. Our 1995 January photometric observations with the EUV E Lexan/B Deep Survey (DS) instrument indicate strong evidence for variability, at a 99% confidence level, during the 12 day observing period. We have utilized ROSAT PSPC soft X-ray power-law models to correlate with EUV E count rates. Besides variations in the normalization level between both observations, our EUV count rates are consistent with a simple power-law model with spectral index α ~ 1.77 (Fv ~ v^-α) that can be extrapolated lated from the soft X-rays to the EUV range. The active galactic nucleus 3C 273 is an important blazar to study because in our picture it reveals the presence of both disk and relativistic beam spectral contributions

    Particle Acceleration and the Production of Relativistic Outflows in Advection-Dominated Accretion Disks with Shocks

    Full text link
    Relativistic outflows (jets) of matter are commonly observed from systems containing black holes. The strongest outflows occur in the radio-loud systems, in which the accretion disk is likely to have an advection-dominated structure. In these systems, it is clear that the binding energy of the accreting gas is emitted primarily in the form of particles rather than radiation. However, no comprehensive model for the disk structure and the associated outflows has yet been produced. In particular, none of the existing models establishes a direct physical connection between the presence of the outflows and the action of a microphysical acceleration mechanism operating in the disk. In this paper we explore the possibility that the relativistic protons powering the jet are accelerated at a standing, centrifugally-supported shock in the underlying accretion disk via the first-order Fermi mechanism. The theoretical analysis employed here parallels the early studies of cosmic-ray acceleration in supernova shock waves, and the particle acceleration and disk structure are treated in a coupled, self-consistent manner based on a rigorous mathematical approach. We find that first-order Fermi acceleration at standing shocks in advection-dominated disks proves to be a very efficient means for accelerating the jet particles. Using physical parameters appropriate for M87 and SgrA*, we verify that the jet kinetic luminosities computed using our model agree with estimates based on observations of the sources.Comment: accepted for publication in the Astrophysical Journa

    Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

    Get PDF
    A Te V flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at Ge V gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission
    • …
    corecore