58 research outputs found

    Attosecond Precision Multi-km Laser-Microwave Network

    Full text link
    Synchronous laser-microwave networks delivering attosecond timing precision are highly desirable in many advanced applications, such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays. In particular, rapidly expanding photon science facilities like X-ray free-electron lasers and intense laser beamlines require system-wide attosecond-level synchronization of dozens of optical and microwave signals up to kilometer distances. Once equipped with such precision, these facilities will initiate radically new science by shedding light on molecular and atomic processes happening on the attosecond timescale, such as intramolecular charge transfer, Auger processes and their impact on X-ray imaging. Here, we present for the first time a complete synchronous laser-microwave network with attosecond precision, which is achieved through new metrological devices and careful balancing of fiber nonlinearities and fundamental noise contributions. We demonstrate timing stabilization of a 4.7-km fiber network and remote optical-optical synchronization across a 3.5-km fiber link with an overall timing jitter of 580 and 680 attoseconds RMS, respectively, for over 40 hours. Ultimately we realize a complete laser-microwave network with 950-attosecond timing jitter for 18 hours. This work can enable next-generation attosecond photon-science facilities to revolutionize many research fields from structural biology to material science and chemistry to fundamental physics.Comment: 42 pages, 13 figure

    The Implication of Cultural Diversity in American Schools

    Get PDF
    The purpose of this article is to analyze the major factors responsible for the cultural diversity in America and their implications for professional educators. These factors include immigration, communication, linguistic diversity, cultural values, and desegregation. While some educators look to the demographics of the new student population, others consider historical clues as a method of understanding American diversity. Statistics about school achievement and dropout and graduation rates show the disparity among the ethnic groups. The new immigrants and ethnic groups may experience conflict as a result of cultural attitudes of teachers and peers. Individuals cannot be understood unless they are seen against the cultural history from which they have come and in terms of the situation in which they currently live. Because of the diversity in the American population, educators need to be sensitive to the cultural elements that may affect students\u27 performance and self-esteem

    Nanostructured silicon photo-cathodes for x-ray generation

    Full text link
    We report the fabrication and characterization of ultrafast laser triggered nanostructured silicon photo-cathodes for x-ray generation via inverse Compton scattering. A highly uniform array of ~2200 silicon pillars with 5 μm array pitch, where each pillar is capped by a nanosharp tip, shows stable current emission using 35 fs, 800 nm laser pulses. The cathodes can emit at 3.6 nA average current over 8-million 1.2 pC electron bunches when excited with 9.5 μJ laser pulses with no degradation of the emission characteristic of the cathode, showing that silicon-based photon-triggered cathodes processed with standard CMOS processes and operated at high vacuum can function for extended periods without performance degradation

    High-density Au nanorod optical field-emitter arrays

    Get PDF
    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m[superscript −1], and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.United States. Defense Advanced Research Projects Agency (Contract N66001-11-1-4192)Gordon and Betty Moore Foundatio

    Phase transitions and the internal noise structure of nonlinear Schr\"odi nger equation solitons

    Full text link
    We predict phase-transitions in the quantum noise characteristics of systems described by the quantum nonlinear Schr\"odinger equation, showing them to be related to the solitonic field transition at half the fundamental soliton amplitude. These phase-transitions are robust with respect to Raman noise and scattering losses. We also describe the rich internal quantum noise structure of the solitonic fields in the vicinity of the phase-transition. For optical coherent quantum solitons, this leads to the prediction that eliminating the peak side-band noise due to the electronic nonlinearity of silica fiber by spectral filtering leads to the optimal photon-number noise reduction of a fundamental soliton.Comment: 10 pages, 5 figure

    High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier

    Get PDF
    High-energy phase-stable sub-cycle mid-infrared pulses can provide unique opportunities to explore phase-sensitive strong-field light-matter interactions in atoms, molecules and solids. At the mid-infrared wavelength, the Keldysh parameter could be much smaller than unity even at relatively modest laser intensities, enabling the study of the strong-field sub-cycle electron dynamics in solids without damage. Here we report a high-energy sub-cycle pulse synthesiser based on a mid-infrared optical parametric amplifier and its application to high-harmonic generation in solids. The signal and idler combined spectrum spans from 2.5 to 9.0 μm. We coherently synthesise the passively carrier-envelope phase-stable signal and idler pulses to generate 33 μJ, 0.88-cycle, multi-gigawatt pulses centred at ~4.2 μm, which is further energy scalable. The mid-infrared sub-cycle pulse is used for driving high-harmonic generation in thin silicon samples, producing harmonics up to ~19th order with a continuous spectral coverage due to the isolated emission by the sub-cycle driver

    Status and Objectives of the Dedicated Accelerator R&D Facility "SINBAD" at DESY

    Full text link
    We present a status update on the dedicated R\&D facility SINBAD which is currently under construction at DESY. The facility will host multiple independent experiments on the acceleration of ultra-short electron bunches and novel, high gradient acceleration methods. The first experiment is the ARES-experiment with a normal conducting 100\,MeV S-band linac at its core. We present the objectives of this experiment ranging from the study of compression techniques to sub-fs level to its application as injector for various advanced acceleration schemes e.g. the plans to use ARES as a test-site for DLA experiments in the context of the ACHIP collaboration. The time-line including the planned extension with laser driven plasma-wakefield acceleration is presented. The second initial experiment is AXSIS which aims to accelerate fs-electron bunches to 15\,MeV in a THz driven dielectric structure and subsequently create X-rays by inverse Compton scattering.Comment: EAAC'17 conference proceeding
    • …
    corecore