69 research outputs found

    M-Power Regularized Least Squares Regression

    Full text link
    Regularization is used to find a solution that both fits the data and is sufficiently smooth, and thereby is very effective for designing and refining learning algorithms. But the influence of its exponent remains poorly understood. In particular, it is unclear how the exponent of the reproducing kernel Hilbert space~(RKHS) regularization term affects the accuracy and the efficiency of kernel-based learning algorithms. Here we consider regularized least squares regression (RLSR) with an RKHS regularization raised to the power of m, where m is a variable real exponent. We design an efficient algorithm for solving the associated minimization problem, we provide a theoretical analysis of its stability, and we compare its advantage with respect to computational complexity, speed of convergence and prediction accuracy to the classical kernel ridge regression algorithm where the regularization exponent m is fixed at 2. Our results show that the m-power RLSR problem can be solved efficiently, and support the suggestion that one can use a regularization term that grows significantly slower than the standard quadratic growth in the RKHS norm

    Online Learning with Multiple Operator-valued Kernels

    Full text link
    We consider the problem of learning a vector-valued function f in an online learning setting. The function f is assumed to lie in a reproducing Hilbert space of operator-valued kernels. We describe two online algorithms for learning f while taking into account the output structure. A first contribution is an algorithm, ONORMA, that extends the standard kernel-based online learning algorithm NORMA from scalar-valued to operator-valued setting. We report a cumulative error bound that holds both for classification and regression. We then define a second algorithm, MONORMA, which addresses the limitation of pre-defining the output structure in ONORMA by learning sequentially a linear combination of operator-valued kernels. Our experiments show that the proposed algorithms achieve good performance results with low computational cost

    Multi-view Metric Learning in Vector-valued Kernel Spaces

    Full text link
    We consider the problem of metric learning for multi-view data and present a novel method for learning within-view as well as between-view metrics in vector-valued kernel spaces, as a way to capture multi-modal structure of the data. We formulate two convex optimization problems to jointly learn the metric and the classifier or regressor in kernel feature spaces. An iterative three-step multi-view metric learning algorithm is derived from the optimization problems. In order to scale the computation to large training sets, a block-wise Nystr{\"o}m approximation of the multi-view kernel matrix is introduced. We justify our approach theoretically and experimentally, and show its performance on real-world datasets against relevant state-of-the-art methods

    Equivalence of Learning Algorithms

    No full text
    The purpose of this paper is to introduce a concept of equivalence between machine learning algorithms. We define two notions of algorithmic equivalence, namely, weak and strong equivalence. These notions are of paramount importance for identifying when learning prop erties from one learning algorithm can be transferred to another. Using regularized kernel machines as a case study, we illustrate the importance of the introduced equivalence concept by analyzing the relation between kernel ridge regression (KRR) and m-power regularized least squares regression (M-RLSR) algorithms

    Entangled Kernels-Beyond Separability

    Get PDF
    Publisher Copyright: © 2021 Microtome Publishing. All rights reserved.We consider the problem of operator-valued kernel learning and investigate the possibility of going beyond the well-known separable kernels. Borrowing tools and concepts from the field of quantum computing, such as partial trace and entanglement, we propose a new view on operator-valued kernels and define a general family of kernels that encompasses previously known operator-valued kernels, including separable and transformable kernels. Within this framework, we introduce another novel class of operator-valued kernels called entangled kernels that are not separable. We propose an efficient two-step algorithm for this framework, where the entangled kernel is learned based on a novel extension of kernel alignment to operator-valued kernels. We illustrate our algorithm with an application to supervised dimensionality reduction, and demonstrate its effectiveness with both artificial and real data for multi-output regression.Peer reviewe

    Learning vocal tract variables with multi-task kernels

    Get PDF
    International audienceThe problem of acoustic-to-articulatory speech inversion continues to be a challenging research problem which sig- nificantly impacts automatic speech recognition robustness and accuracy. This paper presents a multi-task kernel based method aimed at learning Vocal Tract (VT) variables from the Mel-Frequency Cepstral Coefficients (MFCCs). Unlike usual speech inversion techniques based on individual esti- mation of each tract variable, the key idea here is to consider all the target variables simultaneously to take advantage of the relationships among them and then improve learning per- formance. The proposed method is evaluated using synthetic speech dataset and corresponding tract variables created by the TAsk Dynamics Application (TADA) model and com- pared to the hierarchical ε-SVR speech inversion technique

    A Generalized Kernel Approach to Structured Output Learning

    Get PDF
    International audienceWe study the problem of structured output learning from a regression perspective. We first provide a general formulation of the kernel dependency estimation (KDE) problem using operator-valued kernels. We show that some of the existing formulations of this problem are special cases of our framework. We then propose a covariance-based operator-valued kernel that allows us to take into account the structure of the kernel feature space. This kernel operates on the output space and encodes the interactions between the outputs without any reference to the input space. To address this issue, we introduce a variant of our KDE method based on the conditional covariance operator that in addition to the correlation between the outputs takes into account the effects of the input variables. Finally, we evaluate the performance of our KDE approach using both covariance and conditional covariance kernels on two structured output problems, and compare it to the state-of-the-art kernel-based structured output regression methods
    • …
    corecore