5 research outputs found

    Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector

    Get PDF
    Background: Disease modeling with patient-derived induced pluripotent stem cells (iPSCs) is a powerful tool forelucidating the mechanisms underlying disease pathogenesis and developing safe and effective treatments. Patientperipheral blood (PB) cells are used for iPSC generation in many cases since they can be collected with minimuminvasiveness. To derive iPSCs that lack immunoreceptor gene rearrangements, hematopoietic stem and progenitorcells (HSPCs) are often targeted as the reprogramming source. However, the current protocols generally requireHSPC mobilization and/or ex vivo expansion owing to their sparsity at the steady state and low reprogrammingefficiencies, making the overall procedure costly, laborious, and time-consuming.Methods: We have established a highly efficient method for generating iPSCs from non-mobilized PB-derivedCD34+ HSPCs. The source PB mononuclear cells were obtained from 1 healthy donor and 15 patients and werekept frozen until the scheduled iPSC generation. CD34+ HSPC enrichment was done using immunomagnetic beads,with no ex vivo expansion culture. To reprogram the CD34+-rich cells to pluripotency, the Sendai virus vectorSeVdp-302L was used to transfer four transcription factors: KLF4, OCT4, SOX2, and c-MYC. In this iPSC generationseries, the reprogramming efficiencies, success rates of iPSC line establishment, and progression time wererecorded. After generating the iPSC frozen stocks, the cell recovery and their residual transgenes, karyotypes, T cellreceptor gene rearrangement, pluripotency markers, and differentiation capability were examined.Results:We succeeded in establishing 223 iPSC lines with high reprogramming efficiencies from 15 patients with 8 different disease types. Our method allowed the rapid appearance of primary colonies (~ 8 days), all of which were expandable under feeder-free conditions, enabling robust establishment steps with less workload. After thawing, the established iPSC lines were verified to be pluripotency marker-positive and of non-T cell origin. A majority of the iPSC lines were confirmed to be transgene-free, with normal karyotypes. Their trilineage differentiation capability was also verified in a defined in vitro assay.Conclusion:This robust and highly efficient method enables the rapid and cost-effective establishment of transgene-free iPSC lines from a small volume of PB, thus facilitating the biobanking of patient-derived iPSCs and their use for the modeling of various diseases

    Stress Relaxation Measurement of Fibroblast Cells with Atomic Force Microscopy

    Get PDF
    We measured the stress relaxation of mouse fibroblast NIH3T3 cells with an atomic force microscope (AFM) using a sharp silicon tip and a silica bead with a radius of ∼1 µm as an indenter. The decay of loading force was clearly observed in NIH3T3 cells at a small initial loading force of ∼0.4 nN and was well fitted to the stretched exponential function rather than to a single exponential function. The stretching exponent parameter was ∼0.5 for both indenters, indicating that the stress relaxation observed in NIH3T3 cells consisted of multiple relaxation processes. The time-domain AFM technique described in this report allows us to measure directly the relaxation process of living cells in a range from milliseconds to seconds

    Probable rapid eye movement sleep behavior disorder, nocturnal disturbances and quality of life in patients with Parkinson’s disease: a case-controlled study using the rapid eye movement sleep behavior disorder screening questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence provides a clear association between rapid eye movement sleep behavior disorders (RBD) and Parkinson’s disease (PD), but the clinical features that determine the co-morbidity of RBD and PD are not yet fully understood.</p> <p>Methods</p> <p>We evaluated the characteristics of nocturnal disturbances and other motor and non-motor features related to RBD in patients with PD and the impact of RBD on their quality of life. Probable RBD (pRBD) was evaluated using the Japanese version of the RBD screening questionnaire (RBDSQ-J).</p> <p>Results</p> <p>A significantly higher frequency of pRBD was observed in PD patients than in the controls (RBDSQ-J ≥ 5 or ≥ 6: 29.0% vs. 8.6%; 17.2% vs. 2.2%, respectively). After excluding restless legs syndrome and snorers in the PD patients, the pRBD group (RBDSQ-J≥5) showed higher scores compared with the non-pRBD group on the Parkinson’s disease sleep scale-2 (PDSS-2) total and three-domain scores. Early morning dystonia was more frequent in the pRBD group. The Parkinson’s Disease Questionnaire (PDQ-39) domain scores for cognition and emotional well-being were higher in the patients with pRBD than in the patients without pRBD. There were no differences between these two groups with respect to the clinical subtype, disease severity or motor function. When using a cut-off of RBDSQ-J = 6, a similar trend was observed for the PDSS-2 and PDQ-39 scores. Patients with PD and pRBD had frequent sleep onset insomnia, distressing dreams and hallucinations. The stepwise linear regression analysis showed that the PDSS-2 domain “motor symptoms at night”, particularly the PDSS sub-item 6 “distressing dreams”, was the only predictor of RBDSQ-J in PD.</p> <p>Conclusion</p> <p>Our results indicate a significant impact of RBD co-morbidity on night-time disturbances and quality of life in PD, particularly on cognition and emotional well-being. RBDSQ may be a useful tool for not only screening RBD in PD patients but also predicting diffuse and complex clinical PD phenotypes associated with RBD, cognitive impairment and hallucinations.</p
    corecore