1,637 research outputs found
Peak effect and dynamic melting of vortex matter in NbSe crystals
We present a mode locking (ML) phenomenon of vortex matter observed around
the peak effect regime of 2H-NbSe pure single crystals. The ML features
allow us not only to trace how the shear rigidity of driven vortices persists
on approaching the second critical field, but also to demonstrate a dynamic
melting transition of driven vortices at a given velocity. We observe the
velocity dependent melting signatures in the peak effect regime, which reveal a
crossover between the disorder-induced transition at small velocity and the
thermally induced transition at large velocity. This uncovers the relationship
between the peak effect and the thermal melting.Comment: To appear in Physical Review Lette
Kagom\'{e} ice state in the dipolar spin ice Dy_{2}Ti_{2}O_{7}
We have investigated the kagom\'{e} ice behavior of the dipolar spin-ice
compound Dy_{2}Ti_{2}O_{7} in magnetic field along a [111] direction using
neutron scattering and Monte Carlo simulations. The spin correlations show that
the kagom\'{e} ice behavior predicted for the nearest-neighbor (NN) interacting
model, where the field induces dimensional reduction and spins are frustrated
in each two-dimensional kagom\'{e} lattice, occurs in the dipole interacting
system. The spins freeze at low temperatures within the macroscopically
degenerate ground states of the NN model.Comment: 5 pages, 3 figures, submitted to PR
High Q Cavity Induced Fluxon Bunching in Inductively Coupled Josephson Junctions
We consider fluxon dynamics in a stack of inductively coupled long Josephson
junctions connected capacitively to a common resonant cavity at one of the
boundaries. We study, through theoretical and numerical analysis, the
possibility for the cavity to induce a transition from the energetically
favored state of spatially separated shuttling fluxons in the different
junctions to a high velocity, high energy state of identical fluxon modes.Comment: 8 pages, 5 figure
Dynamic ordering of driven vortex matter in the peak effect regime of amorphous MoGe films and 2H-NbSe2 crystals
Dynamic ordering of driven vortex matter has been investigated in the peak
effect regime of both amorphous MoGe films and 2H-NbSe2 crystals by mode
locking (ML) and dc transport measurements. ML features allow us to trace how
the shear rigidity of driven vortices evolves with the average velocity.
Determining the onset of ML resonance in different magnetic fields and/or
temperatures, we find that the dynamic ordering frequency (velocity) exhibits a
striking divergence in the higher part of the peak effect regime.
Interestingly, this phenomenon is accompanied by a pronounced peak of dynamic
critical current. Mapping out field-temperature phase diagrams, we find that
divergent points follow well the thermodynamic melting curve of the ideal
vortex lattice over wide field and/or temperature ranges. These findings
provide a link between the dynamic and static melting phenomena which can be
distinguished from the disorder induced peak effect.Comment: 9 pages, 6 figure
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
Non-generality of the Kadowaki-Woods ratio in correlated oxides
An explicit expression for the Kadowaki-Woods ratio in correlated metals is
derived by invoking saturation of the (high-frequency) Fermi-liquid scattering
rate at the Mott-Ioffe-Regel limit. Significant deviations observed in a number
of oxides are quantitatively explained due to variations in carrier density,
dimensionality, unit cell volume and the number of individual sheets in the
Brillouin zone. A generic re-scaling of the original Kadowaki-Woods plot is
also presented.Comment: 9 pages of text, 1 table, 2 figure
Shadow bands in single-layered Bi_2Sr_2CuO_6 studied by angle-resolved photoemission spectroscopy
We have performed systematic angle-resolved photoemission spectroscopy
(ARPES) on single-layered cuprate superconductor Bi2Sr2CuO6 to elucidate the
origin of shadow band. We found that the shadow band is exactly the c(2x2)
replica of the main band irrespective of the carrier concentration and its
intensity is invariable with respect to temperature, doping, and substitution
constituents of block layers. This result rules out the possibility of
antiferromagnetic correlation and supports the structural origin of shadow
band. ARPES experiments on optimally doped La1.85Sr0.15CuO4 also clarified the
existence of the c(2x2) shadow band, demonstrating that the shadow band is not
a unique feature of Bi-based cuprates. We conclude that the shadow band is
related to the orthorhombic distortion at the crystal surface.Comment: 6 pages, 4figure
- …