3 research outputs found

    Preparation And Characterization Of Multilayered Electrospun Composite Scaffolds For Biomedical Applications

    Get PDF
    Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing and tissue engineering applications. In this study, composites based electrospun polymer fibers Polycaprolactone (PCL) and polyvinyl alcohol (PVA) was produced by using electrospinning technique in which multilayered structure (PCL-PVA-PCL) loaded with gentamicin sulphate (GS) (drug) in the middle layer with PVA. Formerly, metal silver particles were deposited on the surface of electrospun fibers using plasma sputtering technology. The electrospun scaffolds were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), Water contact angle measurement, X-ray Diffraction (XRD) and Thermogravimetric Analysis (TGA). The drug delivery of gentamicin sulphate from the multilayered electrospun PCL-PVA-PCL was investigated by using calorimetric method. The outcomes prove that, initial burst release of the drug could be reduced with the increase in the drug loading from 1% to 4%GS in the multilayered structure. Furthermore, the antibacterial properties of the sample were examined. The multilayered electrospun fiber loaded with drug and sputter coated with Ag has enhanced the antibacterial efficiency from the control. In addition, Biological performance such as cell cytotoxicity was investigated on the cell line fibroblast (Wi38) and human keratinocyte (HaCaT) by using alamar blue assay. The presence of Ag has revealed certain toxic effect with both cell line, and also the increase in the gentamicin concentration has also exhibited particular toxicity. Finally, In-vitro release of silver from the surface of the scaffold was inspected. The results show a uniform release of silver from the surface rather than initial burst release. Therefore, the formulated scaffolds are suitable candidate for biomedical application such as wound healing for prolonged antibacterial Inhibition through uniform release of drug as well as silver particles from the surface of the scaffolds

    Sputtering of electrospun polymer-based nanofibers for biomedical applications: A perspective

    Get PDF
    Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing, and tissue engineering applications. In this review, the synthesis of polymer-based fiber composites using an electrospinning technique is discussed. Formerly, metal particles were then deposited on the surface of electrospun fibers using sputtering technology. Key nanometals for biomedical applications including silver and copper nanoparticles are discussed throughout this review. The formulated scaffolds were found to be suitable candidates for biomedical uses such as antibacterial coatings, surface modification for improving biocompatibility, and tissue engineering. This review briefly mentions the characteristics of the nanostructures while focusing on how nanostructures hold potential for a wide range of biomedical applications.This work was funded by Qatar University, grant number GCC-2017-007 and the publication of this article was funded by the Qatar National Library.Scopu

    Synthesis And Characterization Of Perfluoroalkylated Perylene Diimide Based N-type Polymers For Optoelectronic Applications

    Get PDF
    Organic semiconductors gain wide interest in academics and industry over past two decades due to their vital applications in flexible optoelectronic devices such as organic field effect transistors (OFETs) and organic photovoltaics (OPVs). Stability of the semiconducting materials under different environmental conditions (presence of oxygen, moisture) is important for photovoltaic devices. Although p-type organic semiconducting materials are well developed, their counterparts n-type organic semiconductors with optimum air stability and good operational performance are less developed. Perylene derivatives are well known n-type organic semiconductor materials used in variety of optoelectronic applications. Although perylene derivatives are good n-type semiconductor materials but the devices made of perylene diimides are lacking stability at operational ambient conditions. Therefore, the design and synthesis of air-stable perylene diimide based n-type materials is an urgent research endeavor in the field of optoelectronics. Here we report the synthesis, characterization and optoelectronic properties of perfluoroalkylated perylene diimide based n-type polymers such as Poly[9,9-dioctylfluorene-2,7-diyl-alt-N,N'-di(trifluoromethylphenyl)-3,4,9,10 perylene diimide-1,7-diyl]. These polymers showed three absorption peaks characteristic of perylene diimides. We observed significant red shift for thin films of polymers when compared to polymers in solutions. These polymers can have potential applications in flexible polymers solar cells as well as in OFETs as electron acceptor materials.qscienc
    corecore