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ABSTRACT 

KADAVIL, HANA , MUHAMMED ., Masters :January:2019, Material Science and Technology 

Title: Preparation and Characterization of multilayered electrospun composite scaffolds for 

biomedical applications. 

Supervisor of  Thesis: Dr. Talal Al tahtamouni. 

Electrospinning has gained wide attention recently in biomedical applications. 

Electrospun biocompatible scaffolds are well-known for biomedical applications such as 

drug delivery, wound dressing and tissue engineering applications. In this study, 

composites based electrospun polymer fibers Polycaprolactone (PCL) and polyvinyl 

alcohol (PVA) was produced by using electrospinning technique in which multilayered 

structure (PCL-PVA-PCL) loaded with gentamicin sulphate (GS) (drug) in the middle 

layer with PVA. Formerly, metal silver particles were deposited on the surface of 

electrospun fibers using plasma sputtering technology. The electrospun scaffolds were 

characterized by scanning electron microscope (SEM), Energy Dispersive X-ray 

Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), Water contact 

angle measurement, X-ray Diffraction (XRD) and Thermogravimetric Analysis (TGA).  

The drug delivery of gentamicin sulphate from the multilayered electrospun PCL-PVA-

PCL was investigated by using calorimetric method. The outcomes prove that, initial 

burst release of the drug could be reduced with the increase in the drug loading from 1% 

to 4%GS in the multilayered structure. Furthermore, the antibacterial properties of the 

sample were examined. The multilayered electrospun fiber loaded with drug and sputter 
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coated with Ag has enhanced the antibacterial efficiency from the control. In addition, 

Biological performance such as cell cytotoxicity was investigated on the cell line 

fibroblast (Wi38) and human keratinocyte (HaCaT) by using alamar blue assay. The 

presence of Ag has revealed certain toxic effect with both cell line, and also the increase 

in the gentamicin concentration has also exhibited particular toxicity. Finally, In-vitro 

release of silver from the surface of the scaffold was inspected. The results show a 

uniform release of silver from the surface rather than initial burst release. Therefore, the 

formulated scaffolds are suitable candidate for biomedical application such as wound 

healing for prolonged antibacterial Inhibition through uniform release of drug as well as 

silver particles from the surface of the scaffolds.   

.  
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INTRODUCTION 

Electrospinning is a technique used for the preparation of polymer Nano-micro fibers 

which have great attention in the biomedical industry. The fibers prepared by 

electrospinning process have high-surface volume ratio, adjustable porosity, tailored 

composition and properties. Therefore, it can electrospun wide varieties of polymers such 

as natural polymers, synthetic polymers and biodegradable polymers. These micro/ nano 

fibrous polymers have several advantages such as the fiber scaffold mimics extracellular 

matrix. Therefore, it enhances the cell adhesion, proliferation, migration and 

differentiation; the scaffolds show higher volume to surface ration, higher porosity with 

customized pore size. All this opens for the release of biofactors such as drug, protein, 

genes as well as promote the nutrients and oxygen diffusion plus waste removal. In 

addition, morphology of electrospun nanofibers such as core-shell, hollow, nanowire-

microtubers and three-dimensional fiber scaffold could be modified by changing the 

parameters of electrospinning process. Thus, these precious factors make the electrospun 

nanofibers suitable for biomedical applications such as drug delivery, tissue engineering 

and wound healing. 

Drug delivery idea emerged in the 1970‘s for the controlled release of drug for 

therapeutic treatments  [1]. The high surface area and porosity of polymer fibers grabbed 

great attention in recent years to use as a drug carrier. The polymer fibers morphologies 

and bulk properties can be modified by the use of electrospinning technique. In this 

process, polymer nanofibers loaded with drugs are synthesized for drug delivery. Drugs 

ranging from antibiotic and anticancer agents to proteins, aptamer, DNA[2] and RNA[3] 
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have been incorporated into the nanofiber. The release mechanism of drugs in polymer 

fiber can be altered by the change in the type of drug loadings, such as co-axial 

electrospinning, emulsion electrospinning, multiple layers, blended electrospinning and 

co electrospinning etc. However, multi-layered electrospun fibers have shown a great 

application in drug delivery due to the sustained release of the drug rather than initial 

burst release of drug from the fiber scaffolds. Innovative design for the controlled release 

of drug is layer-by-layer nanofibers stacking sandwich with drug loaded in between. This 

type of design is very simple, easily controllable, and readily fabrication process as 

compared to core/shell. The drug release mechanism of multilayers fibrous mats could be 

controlled by adjustment in the thickness of the outer layer, amount of drug loaded, 

porosity of the scaffolds etc. One of the methods for regulating the delivery of drugs from 

an electrospun fiber mats loaded with drug system and altering the release behavior over 

a specific time is to use hydrophilic and hydrophobic polymers [4].  

PVA known as polyvinyl alcohol is a semicrystalline hydrophilic polymer which is easily 

soluble in water. The solubility in water makes the PVA a great application in drug 

delivery. PVA is a biocompatible, biodegradable and easily electrospinnable polymer. 

However, individual PVA cannot be used for drug delivery due to its water solubility. As 

it will lead to burst release of the drug. PVA is fused with chitson to improve its 

biocompatibility and cell attachment [5][6]. On the other hand, PCL, known as 

polycaprolactone, is a hydrophobic polyester polymer widely studied in electrospinning. 

PCL has a great biomedical application due to its biocompatibility, biodegradation, 

mechanical property, non-toxicity, low cost and low melting point. PCL properties like 

biodegradability, cytotoxicity and degradation rate were studied elaborately for short and 
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long duration in implantations [7], [8].  Degradation of PCL is non-enzymatic which 

means by hydrolysis. PCL fibers are well studied in as a drug carrier in drug delivery. In 

a study, the release of model drug tetracycline hydrochloride (TC-HCL) and phenytoin 

sodium from the PVA-PCL-PVA electrospun nanofibers was reported. The hydrophilic 

and hydrophobic polymer was prepared layer by layer by incorporating multiple drugs 

such as PHT-Na to OVA and TC-HCL to PCL, respectively.  

Other than drug delivery, electrospinning techniques has gained much consideration in 

tissue engineering.  The electrospun fibers structure possesses many characters suitable 

for tissue engineering such as mechanical properties, high surface to volume ratio and 

adjustable porosity. Tissue engineering is an advance field of science which merge with 

applied engineering and bioscience for constructing biomaterials that recover, sustain or 

improve the biological activities of injured tissues [9]. Wound healing or skin tissue 

engineering has been studied very well in recent years. The wound healing process takes 

place in four different steps: hemostasis, inflammation, proliferation and remodeling [10]. 

The wound healing is stabilized by different cells, growth factors and cytokines. In the 

first process, the host cells and bacteria are removed by the macrophages in the 

inflammation step.  These macrophages also secret some factors eligible for the 

angiogenesis, fibroplasia and extracellular matrix production [11]. The endothelial cells 

proliferation, migration and remodeling are important factors that contribute to the 

angiogenesis [40]. Finally, fibroblast proliferation leads to the rebuilding of the function 

and structure in the injured site[13]. During these all stages, antibacterial protection is an 

important factor. In electrospun fiber antibacterial agents such as antibiotics and silver 

are incorporated. Silver is a transition metal in the periodic table. The silver related 
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compounds or nanoparticles have a biocidal effect on around 16 specious bacterial 

because of its toxic effect on microorganisms [14][15]. The silver nanoparticles were 

added to the electrospun fibers via Ag ions through the wetting process[16][17], silver 

sulfadiazine [18], etc.  The wetting process for the preparation Ag to the matrix have 

many disadvantages such as uneven distribution of nanoparticles, using reducing agents 

that are toxic, and controlling the size of nanoparticles is a difficult task depending on the 

strong and weak reducing agents used[19]. However, the most efficient way of 

introducing nanoparticles to the surface of polymer or fabrics could be done by using 

plasma technology. Plasma technology provides a uniform deposition, less use of 

resources as well as a simple process for the coating of an antibacterial material such as 

Ag, Si, Cu etc, to the surface of the polymer than wetting process.  

In this work, drug delivery mechanism of multilayered electrospun fiber mats of PVA 

and PCL loaded with Gentamicin sulfate sputter coated with silver was studied. As well 

as cell toxicity of the fiber mats was studied. Simultaneously, sputter coated silver 

nanoparticles on the PCL electrospun fiber was studied. And we investigate the effect of 

cytotoxicity of silver with the human cell line (HaCaat and Wi38). Finally, in-vitro 

release of silver from the fiber scaffold was studied for investigating the longevity of 

antibacterial property of the material.  Antibacterial effect was also demonstrated in this 

work for wound dressing applications. 

1.1 Objectives 

 To optimize the individual fibers of PCL, PVA and multilayer electrospun fiber 

mats. 
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 To prepare electrospun fiber mats in multilayer (PCL-PVA-PCL) design loaded 

with gentamicin sulfate to investigate the effect on drug release behavior on 

scaffold loaded with drug at different percentage  

 To investigate the release pattern of Ag from the composite scaffold for 

longitivity of antibacterial properties. 

 To investigate the cytotoxicity of the prepared fiber mats for biomedical 

applications. 

 To introduce sputter coating technology to the fiber mats for antibacterial activity. 

 Study the cytotoxicity of the prepared scaffolds. 

 To investigate the antibacterial property of the prepared fiber mats 
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LITERATURE REVIEW 

1.2 Introduction: 

 

In the last 20 years, emergence of nanotechnology has gained much attention for 

electrospinning process. This process is used for the preparation of polymer Nano-micro 

fibers and it has great importance in biomedical industry due to its cost effectiveness, 

scalability, versatility and simplicity. The process was invented in 1901 by JF cooley and 

WJ morton but had slower development over 100 years. Later in the years, Reneker [20] 

invented the fiber preparation from organic polymer, which created a new field of science 

for the formulation of fibers ranging between nm – m.  

Electrospinning device includes four main components Figure (1) high power supply, 

syringe pump, syringe needle with solutions and a collector for fiber deposition. The 

electric field passes through the polymer solution, where the positive electrode is 

connected to the needle and the negative electrode to the collector. Hence, when the 

voltage is applied, the repulsive charge accumulates at the tip of the needle which is 

shaped in the form of a hemisphere[21].  When the electric filed is applied the solution at 

the tip of the needle should possess high surface energy and surface tension. When the 

repulsive charge overcomes the surface tension, it leads to the formation of Taylor cone. 

This will direct the polymer solution towards the negative electrode as collector and 

produce fibers. The solvent from the polymer solution is evaporated and the polymer 

solution is deposited on the collector as dry fibers ranging from nanometers to 

micrometers[22]. 
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Figure 1: Schematic representation of electrospinning apparatus. 

 

 

The fibers prepared by electrospinning process have high-surface volume ratio, 

adjustable porosity, tailored composition and properties. Therefore, it can electrospun 

wide varieties of polymers such as natural polymers, synthetic polymers and 

biodegradable polymers. These micro/nano fibrous polymers have several advantages 

such as the fiber scaffold mimics  extracellular matrix. Therefore, it enhances the cell 

adhesion, proliferation, migration and differentiation; the scaffolds show higher volume 

to surface ration, higher porosity with customized pore size. All this opens for the release 

of biofactors such as drug, protein, genes as well as promote the nutrients and oxygen 

diffusion plus waste removal. In addition, morphology of electrospun nanofibers such as 

core-shell, hollow, nanowire-microtubers and three dimensional fiber scaffold, could be 
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modified by changing the parameters of electrospinning process. Thus, these precious 

factors make the electrospun nanofibers suitable for biomedical applications such as drug 

delivery, tissue engineering and wound healing.  

1.3 Drug delivery 

Drug delivery idea emerged in the 1970‘s for the controlled release of drug for 

therapeutic treatments  [1]. The high surface area and porosity of polymer fibers grabbed 

great attention in recent years to use as drug carrier. The polymer fibers morphologies 

and bulk properties can be modified by the use of electrospinning technique. In this 

process, polymer nanofibers loaded with drugs are synthesized for drug delivery. Drugs 

ranging from antibiotic and anti- cancer agents to proteins, aptamer, DNA[2] and RNA[3] 

have been incorporated into nanofiber. The release mechanism of drugs in polymer fiber 

can be altered by the change in the type of drug loading, such as co-axial electrospinning, 

emulsion electrospinning, multiple layer, blended electrospinning and co electrospinning 

etc. However, co-axial electrospinning and multi layered electrospun fibers have shown 

great application in drug delivery due to the sustained release of the drug rather than 

initial burst release of drug from the fiber scaffolds. Therefore, recent advancement in the 

field of electrospinning for drug delivery will be discussed in the proceeding paragraphs. 

Electrospinning in drug delivery is categorized into the drug loading type, drug loading 

materials and type of drugs. 

1.4 Drug loading type 

The electrospinning have different drug loading type which determines the diverse 

structure and different drug release kinetics. The drug loading procedure in 
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electrospinning could be executed in different ways such as co-electrospinning, multi 

electrospinning, side by side electrospinning, co-axial, surface immobilization and 

emulsion electrospinning Figure (2). The co-electrospinning drug molecules are mixed 

with the polymer solution prior to electrospinning. These electrospun fibers provide 

uniform distribution of drugs/biomolecules and high drug/biomolecules loading. 

However, the biomolecules properties could be damaged when they face the high voltage 

directly. On the other hand, blend electrospinning or side by side electrospinning help to 

sort the issue with the drug and molecules solubility in common solvents. Moreover, the 

multi-jets with more than two spinnerets exhibit a way to protection for the bioactivity of 

drug. Furthermore, surface immobilization is another method where drug molecules are 

covalently bonded with the scaffolds via chemical or physical immobilization method. In 

this chemical methods, the surface of nanofibers is changed by introducing amines, 

carboxyl, hydroxyl or thiol; the physical method includes the incorporation of 

vaderwaals, electrostatics and hydrophobic interactions. This immobilization retains the 

biomolecule activity, but all the electrospinning process show burst release kinetics of the 

drug molecules. In this situation, co-axial and emulsion electrospinning process are 

introduced. In co-axial and emulsion electrospinning is where the biomolecules are 

incorporated with the core protected by shell molecules from environmental defects. 

They also provide sustained release of drug by minimizing initial burst release by 

controlling the thickness and composition of the shells.  Another advantage of drug 

loading for sustained release of drug is layer by layer via addition of drug in between the 

electrospun scaffolds; this controlled release is promoted by the shield provided by the 

layer polymer scaffolds. Therefore, co-axial electrospinning and multilayer 
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electrospinning drug loading type provide a better sustained and controlled release of 

drug.  

 

 

 

 

 

 

Figure 2: Schematic representation of different type of electrospinning process[23]. 
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1.4.1.1  Multiple layered fiber mats. 

Multilayered fiber mats provide the control release of drug is layer-by-layer nanofibers 

stacking sandwich with drug loaded in between. This type of design is very simple, easily 

controllable, and readily fabrication process as compared to core/shell. The drug release 

mechanism of multilayers fibrous mats could be controlled by adjusting the thickness of 

the outer layer, the amount of drug loaded, porosity of the scaffolds etc. The designing of 

core/shell structure is a difficult process in one sense due to the diverse properties of 

electrical and rheological properties such as conductivity and surface tension of the core 

and shell polymer materials [24] . Hence, due to difficulty in fabricating core/shell, 

electrospun fiber mats could not achieve a sustained repeatability, and also controlled 

release of drug from the structure is difficult to study efficiently.  There are many fibers 

incorporated with drug molecules that were electrospun with varied thickness and studied 

its drug delivery mechanism. Geun Hyung Kim [25] prepared PCL-PEO-PCL layered 

fiber mats and drug delivery was studied with various thickness of PCL outer layer. It is 

shown that, burst release can be erased by increasing the thickness of the PCL layer as 

well as by incorporating antimicrobial peptide HPA3NT3 which doesn‘t lose its 

biological activities. On the other hand, sustained release of drug haloperidol was 

investigated by changing the hydrophobicity of the scaffolds. Herein, PVA-methylated b-

cyclodextrin was incorporated with PLA and PLGA. Addition of b-cyclodextrin reduces 

the fiber degradation rate of PVA [26]. It is noted that, as the hydrophobicity of the 

scaffold increases the release of hydrophilic drug  is sustained in a controlled manner. 

Where, the polyester polymers release the drug via hydrolysis manner. The blending of 

hydrophobic and hydrophilic drug will minimize the toxicity caused by the burst release 
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of drug. This type of combination can be applied in hydrophobic and heat sensitive drug 

due to the simplicity of the process.  

The drug delivery of ibuprofen from sandwich layered fibers mates was studied and its 

mathematical modeling was elaborated by using power law, higuchi equation and Fick‘s 

second law was applied [27]. The mathematical modeling suggests that, thickness of the 

fiber mats concern more on drug delivery than the concentration of the loaded drug. Here, 

PLA was electrospun successfully by incorporating ibuprofen drug in between the two 

layers of PLA. Finally, according to the type of treatment the drug loading can be 

changed in accordance with the thickness of the layers for the controlled release of drug. 

Dave Wei-Chih Chen [28] has studied the drug delivery of vancomycin, gentamicin, and 

lidocaine for wound healing applications. Here in, they successfully mixed 

PLGA/collagen on the outer layer and PLGA loaded with drug in the middle layer. The 

drug vancomycine and gentamicin has released in high concentration from biodegradable 

polymer scaffold. However, lidocaine has shown release upto 3 weeks. The bioactivity of 

drug was shown 40-100% efficiency and it was concluded that this scaffold was suitable 

for boosting the wound healing process at initial stage of wound.   

1.5 Drug loading materials 

Varieties of polymers can be electrospun into diverse design for drug delivery 

applications in accordance with polymer-drug compatibility and ability to be molded to 

fit for variety of delivery routes. While designing an optimized drug delivery system, 

there are many polymer factors to be considered. For instance, biocompatibility, 

biodegradability, mechanical properties and hydrophilicity [29]. There are many polymer 

varieties such as natural and synthetic polymers that are used for designing drug delivery 
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system. A diverse range of drug have been loaded into the system such as growth factors, 

DNA, proteins, inhibitors and antibiotics [30][31][32].   

Electrospinning process can be easily applied for synthetic polymers with great 

flexibility. However, synthetic polymers affect cell affinity due to the hydrophobic nature 

and smooth surface for the cell recognition sites. On the other hand, natural polymers 

show enhanced biocompatibility, some exhibit antibacterial properties and better clinical 

functionality. The natural polymer include cellulose, chitosan, chitin, dextrose, collagen, 

silk, gelatin etc  [33].  For instance, lee et al. concluded the features of diverse 

polysaccharide on electrospinning and their biomedical applications such as drug 

delivery, wound dressings and enzyme immobilization[34]. The studied polysaccharides 

are such as cellulose, chitosan, alginate, chitin, starch, hyaluronic acid, dextran and 

heparin. Chitosan polymer had the properties of anticancer due to the polycationic nature. 

Quartininized form of chitosan is well known for their better in vitro anticancer ability 

against Hep3B, HeLa and SW480 cells [35].   However, the natural polymers lack better 

mechanical strength as well as relatively sudden degradation rate due to its hydrophilic 

nature which inhibit their use in long term drug delivery process. And also chances for 

immunogenicity, batch to batch differences, their limited availability, expensive 

productions and vulnerability to cross-contamination, these all demerits make their 

clinical application to limited form [36]. 

On the other hand, the limitation of natural polymers could be minimized in the 

application by the use of synthetic polymers:mainly biodegradable polymers such as poly 

caprolcatone (PCL), polyvinyl alcohol (PVA), polylactic acid (PLA), Poligylcolic acid 

(PLGA). These synthetic polymers can be degraded via enzymolysis or hydrolysis. 
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Therefore, these materials have great importance in drug delivery because the drug 

delivery for tissue regeneration process could take time, also the tissue regeneration can 

occur [37]. The rate of degradation depends on the sustained release of drug so that the 

degradation rate can be controlled by changing the parameters such as rate of the ratio of 

amorphous to crystalline segments of polymers and polymer blend compositions 

[38][39]. Synthetic polymers has many advantages in comparison to natural polymers 

because of its non-expensive, good mechanical properties, tunable degradation as well as 

durability. However, they have demerits such as lack of cell specific recognition site due 

to the hydrophobic and smooth surface.  

The production of novel composite fibers in combination of synthetic and natural 

polymer could reduce the disadvantages. The combination of natural and synthetic 

polymers would help for the formation of fiber same as extracellular matrix, outstanding 

mechanical properties and adjustable biodegradability. For example, the PLGA-gelatin 

was fabricated in blending electrospinning for the drug delivery of fenbufen (FBF) [40]. 

These blend scaffolds have optimized mechanical properties, degradation rate and 

bioactivity. However, the drug release profile could be controlled by increasing the 

PLGA in the blend.  It will make the scaffolds more hydrophobic and slower degradation 

rate. In another paper, blend of PCL-gelatin composite scaffolds was prepared and PCL 

being a hydrophobic polymer gave rise to tunable hydrophobicity, degradation rate and 

mechanical properties.  Consequently, gelatin provided cellular attachment and adhesion 

of bone marrow derived from human mesenchymal stem cells (hMSCs). Thus, these type 

of tunable properties could engender the promising scaffolds for drug delivery 

application and tissue engineering system [41]. While designing a system for sustained 
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release of drug, there are many factors contributing for the efficient release of drug from 

the polymer scaffolds. The factors are degradation and wettability of the polymer 

scaffolds, type of drug and drug loading type.  

For sustained release of the drug, the most important factor is the drug loading type. 

There are many type of loading including co-axial electrospinning and multilayer 

electrospinning which shows controlled release of drug for long term. The sustained 

release of the drug depends on the following factors, in coaxial electrospinning such as 

thickness of the shell layer, porosity, degradation rate of the shell fiber, hydrophobicity of 

the scaffolds etc. On the other hand, in multilayered electrospinning the drug release 

kinetics depends on the scaffolds porosity, thickness of the outer layer and hydrophilicity 

of the scaffolds etc.   

1.5.1.1 Polycaprolactone (PCL) 

PCL, known as polycaprolactone, is a hydrophobic polyester polymer widely studied in 

electrospinning. PCL is having great biomedical application due to its biocompatibility, 

biodegradation, mechanical property, non-toxicity, low cost, low melting point.  

Commercially available PCL ranges from 3000 to 85000g/mol molecular weight. PCL is 

a hydrophobic molecule. Hence, it dissolves in solvents like chloroform, acetone, acetic 

acid, dichloromethane, toluene, methanol, benzene and tetrachloride [42]. PCL properties 

like biodegradability, cytotoxicity and degradation rate has been studied elaborately for 

short and long duration in implantations [7], [8].  Degradation of PCL is non-enzymatic 

by hydrolysis. PCL fibers are well studied as drug carrier in drug delivery.  

.  
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1.5.1.2 Polyvinyl alcohol (PVA) 

PVA known as polyvinyl alcohol is a semicrystalline hydrophilic polymer which is easily 

soluble in water. The solubility in water makes the PVA a great application in drug 

delivery. PV is a biocompatible, biodegradable and easily electrospinnable polymer. PVA 

has been used for sacrificing template for the preparation of non-electrospinnable 

polymers. However, individual PVA cannot be used for drug delivery due to its water 

solubility. As it will lead to burst release of drug. PVA was fused with chitson to improve 

its biocompatibility and cell attachment [5][6]. Gelatin electrospun with PVA as template 

for better fiber of gelatin[43]. PVA has been used for sacrificing template for the 

preparation of non-electrospinnable polymers[43]. However, PVA have poor mechanical 

properties. Therefore, many scientists have tried to study the composite material which 

could enhance the mechanical properties of the PVA[43]. PVA embodiment with PCL 

polymer has gained much attention recently because its mechanical character could be 

enhanced by the addition of PCL. Therefore, PCL/PVA as multilayers scaffolds for 

sustained and controlled release of drug was studied below. 

1.5.1.3 PCL/PVA: 

The multilayered structure has gained much attention due to its versatility and controlled 

release of drugs. The drug was studied as middle layer and outer layer would controlled 

release of antibiotics. For instance, Yuan-Yuan Liu [44] prepared a novel scaffold by 

integrating 3D bioprinting platform and electrospinning for studying the multiple drug 

delivery. Here, PVA blended with gentamicin sulfate and co-axial PVA-DFO/PCL was 

fused like layer by layer to form a 3D scaffold for osteointegration and sustained drug 

release. Burst release was noted for gentamicin sulfate, but sustained and controlled 
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release for DFO due to the presence of vertical gradient of sodium alginate/gelatin in the 

scaffold makes the DFO release as gradient- mode. Therefore, combination of 3D 

bioprinting and electrospinning can be used for preparing functional gradient scaffolds. In 

another study, release of the model drug tetracycline hydrochloride (TC-HCL) and 

phenytoin sodium from the PVA-PCL-PVA multilayered electrospun nanofibers was 

reported[45]. The hydrophilic and hydrophobic polymer was prepared layer by layer by 

incorporating multiple drugs such as PHT-Na to OVA and TC-HCL to PCL, respectively. 

The 87% of TC-HCL was released from single fiber and only 47% was released from 

multilayer scaffolds. The release kinetics mechanism was fickian diffusion as well as 

release profile corresponded to korsmeyer-peppas equation. These materials had great 

application in wound dressing mats. The multilayered electrospun fiber scaffolds have 

great importance in drug delivery.  

1.6 Type of drugs 

1.6.1.1 Antibacterial and antibacterial agents 

Antibiotics and antibacterial agents were incorporated for the enhancement of scaffold 

properties. Iganatova.et al. has studied the use of diverse antibiotics in the electrospun 

scaffolds and their application of wound dressing [46]. The antibiotics are tetracycline 

hydrochloride, ciprofloxacin, moxifloxacin, levofloxacin and antibacterial agents (for 

example, 8-hydroquioline derivatives, bezalkonium chloride, itraconazole, fusidic acid or 

silver nanoparticles). Gentamicin sulphate loaded PLGA and gelatin was also studied for 

the continuous release of drug [47].  The results showed that PLGA/gelatin 70:30 

nanofibers scaffolds exhibited a systematic release in the drug during first 15h rather than 

burst release effect. This indicates that this is a promising scaffold for wound healing 



18 
 

applications.  On the other hand, the drug release profile was studied for polyethylene 

covinyl acetate and PLA blend scaffold in which TC-HCl was the model drug[48]. The 

release of the drug delivery depends on the type of fiber and percentage of drug content. 

The result stated that the 5% drug loaded 50/50 blend solutions had shown drug release 

for 5 days without burst release. In addition, 25wt% has indicated rapid release than the 

5wt% due to the more surface-partition effect of the drug in the former case.  

1.6.1.2 Anticancer: 

Not only antibiotics but also many other types of drugs, such as anticancer drugs, are 

applied to the scaffolds of electrospun mats for chemotherapy. Diverse anticancer drugs, 

such as docorubucin (Dox), paclitaxel (PTX), dicholoroacetate and platinum complexes 

are incoparated into the  electrospun fibers for localized postoperative chemotherapy 

session. For instance, Xu et al. fabricated PEG-PLLA loaded electrospun fibers via 

emulsion water-in-oil emulsion method in which aqueous phase was hydrophilic drug 

and oily phase was chloroform solution of PEG-PLLA. The results showed that,  PLLA 

was completely immersed in the electrospun fibers[49]. In the same way they 

successfully incorporated hydrophobic Pacitaxel (PTX) and DOX, simultaneously added 

to the nanofibers scaffolds via emulsion electrospinning method, and then multiple drug 

delivery was studied [50]. In contrast, Xe et al prepared electrospun scaffold of 

PLA/PLGA (30/70) blend fiber added with cisplatin, and the results showed a 90% 

encapsulation efficiency;  the sustained release of drug was noted for 75days to treat in 

vitro of glioma [51]. 
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1.6.1.3 Protein, DNA, RNA and other growth factors 

Overtime, electrospinning has improved; thereby propagating many new innovative ideas 

for biomedical applications.  Blend electrospinning and co-axial electrospinning has been 

developed with the addition of protein, DNA, RNA and growth factors combined with 

the electrospun fiber mats for biomedical applications. The main challenges faced in this 

type of design is the loss in the bioactivity of the drug incorporated. Therefore, it is 

mandatory to optimize the material and electrospinning parameters for efficient results. 

Hence, the process of blend electrospinning and co-axial electrospinning has acquired 

more interest in this specific type of drug addition.  Co-axial electrospinning is more 

efficient for protecting the bioactivity of the drug than blend. Chew et al, encapsulated 

the human nerve growth factor with the BSA as a carrier into the polymer such as PCL 

and poly(ethyl ethylene phosphate)[52]. The results showed that, there was a partial 

bioactive retention of the hNGF when the PC12 cell line was introduced to the scaffolds.  

There was a consistent release of hNGF around 3 month without burst release. The same 

group studied the release of small interfering RNA (snRNA) and transfection reagent 

(TKO) on electrospun fibers of copolymer caprolactone and ethyl ethylene phosphate 

(PCLEEP) [53]. The results showed a sustained release of siRNA around 28 days. The 

copolymerization of ethyl ethylene phosphate with PCL has induced the SiRNA delivery 

rate as well as gene knock down efficiency than PCL alone.  In co-axial electrospinning 

the bioactive components are incorporated inside the core and protected by shell polymer. 

Hence, bioactivity can be protected to the electrospinning environment and biological 

environment.  Saraf and co-workers have studied the addition of plasmid DNA (pDNA) 

in to the core and shell polymers with non-viral gene carrier poly(ethleamine)-hyalouric 
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acid (PEI-HA)[54]. The gene release was notified around 60 days by diverging the 

parameters such as concentration of pDNA and molecular weight of the core for 

controlling the transfer efficiency of the  pDNA.  The Bioactivity of the drug could be 

controlled by the new design suggested by Mickova et al [55]. He proposed the addition 

of liposomes to the core which can hold the bioactive ingredients and protect its activity 

for efficient action due to the shielding of lipid sphere from the electrospinning process.  

1.7 Mechanisms of drug release: 

The drug release mechanism from the scaffolds are completed in three process such as 

desorption from the surface, diffusion through the fibers and fiber degradation[56]. These 

three processes could occur together which impacts the release kinetics throughout the 

entire process. The Figure (3) illustrates the schematic representation of drug release 

behavior from different types of dug loading. When the fiber is immersed in the aqueous 

media desorption mechanism happened to the drug on the surface as well as drug present 

inside the nanopores of the nanofibers [57] . In these three mechanisms, desorption is 

considered for the drug on the surface of the polymer, therefore burst release is noted. 

This burst release is due to the direct interaction of the medium with the polymer surface. 

Hence, burst release of the drug is not useful so surface modification is obtained, i.e.  The 

main physical modification for the controlled and sustained release of the drug to the 

environment.   

The second type of kinetics is diffusion mechanism, in which the concentration gradient 

makes the release of drug to the medium. Herein, diffusion process reduces the effect of 

initial burst release and exhibit controlled and sustained release of drug. The co-axial and 

emulsion electrospinning model can showcase this type of release kinetics. Finally, the 
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third type of release mechanism is degradation of the outer surface. For instance, low 

degradable polymer used as the shell showed sustained release of drug due to low 

degradation rate. Therefore, the mechanism of drug release kinetics was optimized using 

the polymer incorporated and the type of electrospinning process. PCL is a low 

biodegradable polymer however; PVA is a highly biodegradable polymer. Therefore, 

combination of these two polymers could provide a better drug release profile.
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Figure 3: Drug loading and release (desorption and diffusion) from polymeric micro/nanofibers fabricated by (a) surface modification, 

(b) blending, (c) coaxial and (d) emulsion electrospinning. The green color stands for polymer, blue for drugs and maroon for 

surfactant. The red arrows represent the direction of the drug release [58]. 
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1.8 Tissue Engineering 

Electrospinning techniques have gained much consideration in tissue engineering.  The 

electrospun fibers structure possesses many characters suitable for tissue engineering 

such as mechanical properties, high surface to volume ratio and adjustable porosity. 

Tissue engineering is an advance field of science which merges with applied engineering 

and bioscience for constructing biomaterials that recover, sustain or improve the 

biological activities of injured tissues [9].  For efficient tissue engineering process, three 

parameters are considered such as, seeding and attachments of cells, biomaterial scaffolds 

and addition of cell signaling factors. In this, biomaterial scaffolds is a major parameter 

where they should mimic natural extra cellular matrix, sufficient mechanical properties, 

biocompatibility, hydrophilic surface, biodegradability, high surface area and high 

interpore connectivity. These criterions which contribute to cell proliferation, 

differentiation and migration. In this, electrospun fibers can be prepared in cost-effective 

and efficient manner to produce suitable candidate scaffold for tissue engineering. 

Nowadays, several electrospun fiber mats are prepared and studied for tissue engineering 

with or without addition of biological agents or growth factors for  wound healing, bond 

construction and nerve tissue regeneration.   

1.8.1 Skin tissue engineering/ wound healing 

In recent years, wound healing or skin tissue engineering has been researched very often . 

Generally, the wound healing process takes place in four different steps: hemostasis, 

inflammation, proliferation and remodeling [10]. The wound healing is stabilized by 

different cells, growth factors and cytokines. In the first process, the host cells and 
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bacteria are removed by the macrophages in the inflation step.  These macrophages also 

secrete some factors eligible for the angiogenesis, fibroplasisa and extracellular matrix 

production [11]. The proliferation, migration and remodeling of endothelial cells is an 

important factor that contributes to angiogenesis [40]. Finally, fibroblast proliferation 

leads to the rebuilding of the function and structure in the injured site[13].  Therefore, 

efficient wound dressing material is mandatory for proper treatment of the wound. 

Wound healing scaffold should have good biocompatibility, mechanical properties and 

capability to prevent the fluid evaporation from the injured site. Furthermore, it should 

provide the site for cell epithelization and inhibit the infections[59]. Hence, the ability of 

cell attachment to the electrospun fiber scaffolds plays an important role in the efficiency 

of engineered wound dressing scaffolds. Material and manufacturing process are 

important for the preparation of an ideal wound dressings mats. Electrospinnning is an 

ideal manufacturing process for wound dressing mats due to the above advantages such 

as it has biocompatibility, biodegradability, hydrophilic surface, porosity and so on. 

Moreover, as nanofibers scaffolds grant a better clearing of exudates from the injures site, 

manages the loss of water and also oxygen diffusion in and out of the wound site [60]. 

There are natural (like collagen, gelatin, chitosan) and synthetic biodegradable polymers 

(PCL,PLGA,PGA,PLA, PVA etc) that are molded together to form scaffolds. 

Electrospun scaffold are prepared in combinations of different natural and synthetic 

biodegradable polymers loaded with antibacterial and wound healing factors. The 

polymers are co-electrospinned, blended, co-axial and multilayers electrospinning.  Syed 

Mahdi Saeed [61], has studied prepared a multilayered fiber mat loaded with curcumin as 

an antibacterial active component from the novel PCL-PVA-PCL multilayered 
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electrospun fibers. The results show that, multilayered PCL-PVA curcumin-PCL has 

illustrated better exudate absorbance than pristine dressing in the incision. In the same 

vein, it summarize that, 16% loaded curcumin display antibacterial activity without 

killing the cell viability.  Antibacterial properties can be built up in the scaffold with the 

addition of antibacterial agents or antibiotics. Silver is a well-known antibacterial agent 

because it can damage the DNA replication of bacteria [18]. Fatemeh Khodkar [62] has 

successfully prepared PVA/PCL core/shell loaded with silver nanoparticles in core for 

wound dressing applications. Fiber loaded with silver shown lower porosity as well a 

water vapor transmission rate(WVTR) and also greater contact angle. These scaffolds are 

suitable for long term antibacterial activity (Escherichia coli and Staphylococcus aureus) 

because of the sustained and controlled release of the silver nanoparticles in core/shell 

structure. On the other hand, PCL/PVA was co-electrospinned by loading silver 

sulfadiazine(SSD) as drug  for wound dressing mats [18]. PCL and PVA loaded with 

SSD was prepared successfully. The effect of different weight % of SSD on mechanical 

and cell toxicity and antibacterial properties was studied. The better SSD concentration 

was identified with antibacterial ability and cellular attachment as well as proliferation 

was notified. Where, addition f SSD increases the fiber diameter as well as hydrophilic 

properties but reduces the mechanical properties of the scaffold. Fibronectin coating can 

improve the biocompatibility of the scaffolds loaded with SSD. Therefore, 5% SSD 

loaded co-electrospun PVA-PCL show better antibacterial and reasonable cell 

proliferation and differentiations. Recently, L. Du has fabricated PVA merged with 

monodisperse AgNPs and PCL loaded with Ascorbyl palmitate (AP) by duel spinneret 

electrospinning [63]. The NIH-3T3 fibroblast cells are seeded on the scaffold mats and 
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showed that, AP inhibits the toxic effects of AgnPs on cell proliferation. It should also be 

noted that, antibacterial tests validate the inhibition towards gram negative and gram 

positive Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) respectively. 

Wound healing test and histological observation conclude that, this material provide a 

promising for future biomedical applications.  

 [64] Porosity and surface wettability is an important parameter which determines the 

healing process. Xin Liu has electrospun PVA,PCL,PAN and PVdF-HFP incorporating 

wool protein and Ag for wound dressing mats. Thus, it can be concluded that, other than 

nanofiber diameter and antibacterial property the porosity and hydrophilicity is an 

important factor that enhances the wound healing process. The Hydrophilic membrane 

showed efficient remedy for wounds in comparison to the hydrophobic membrane. 

Porosity for oxygen diffusion also leads to better wound healing process.   However, 

wound healing process for diabetic ulcers are time consuming due to the lack of efficient 

blood supply because of higher amount of sugar in the blood. These processes leads to 

long inflammatory stage, defected angiogenesis and blocked fibroblast proliferation. 

Adeleh Gholipour-Kanani has prepared novel electrospun blended fibers of Chitosan-

poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)-chitosan-poly (vinyl 

alcohol) (PCL: Cs: PVA) (2:1:1.5) for wound healing in diabetic patients. The above 

fabricated scaffolds wound healing prate was studied by applying to diabetic dorsum skin 

wounds and diabetic foot wounds on a rat model (n-16). The scaffolds had far effective 

healing process than control ones.  More granulation tissues are presence in the scaffolds 

treated wounds than the control ones and within 20 days the scaffolds provided better 
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wound repair than controls. Hence, PVA:CS:PCL is a considerable  material for diabetic 

wound healing.  

1.8.2 Bone tissue engineering applications: 

Bone is the strong rigid organ which plays an essential role in our body. It protects our 

vital interior organs, movement, manufacturing of white blood cells and red blood cells, 

and also storage of minerals[65]. In bone extra cellular matrix mainly consist or organic 

and inorganic components such as collagen and hydroxyapatite (HAp). Incorporation of 

these components make suitable scaffolds for bone tissue engineering applications. The 

electrospun scaffolds architecture play an important parameter for successful bone 

regeneration. They are microstructure of the scaffolds, its porosity and surface 

properties[66]. The electrospun fiber should provide better mechanical properties to 

support the structure and arrange a space for the osteocondral adhesion, proliferation and 

differentiation. Hence, the development of an ideal scaffold for tissue regeneration could 

be achieved by using a porous ceramic material, lamellar material and a fiber matric 

material for better biological and physical properties. Subramanian Uma Maheshwari has 

developed a scaffold comprise of polymer –ceramic combination of  PCL/PVA bilayer 

scaffold blended with HAp nanoparticles[67]. (PVA-PCL)-HAp has improved its 

porosity around 64% as well as hydrophilicity around 141%. Also MTT assay studies 

with MG-63 osteoblast cells had better cell adhesion and proliferation which show a 

promising application for tissue regeneration. However, incorporation of growth factors 

(GF) or drug to the scaffold is also important for enhancing the regrowth of broken 

bones. There are many GF such as bone morphogenetic protein-2 (BMP-2) and VEGF 

added to the electrospun scaffolds for the long lasting sustained release of GF to mimic 
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the natural healing process. For instance, co-axial electrospun of collegen-PCL 

incorporated with BMP-2 and dexamethasone (DEX) has shown better controlled release 

of GF, thereby encouraging the osteogenic expression of human mesenchymal stromal 

cells hMSCs [68]. In this design the shell layer was loaded with DEX and the core was 

incorporated with BMP-2. The dual drug release was exhibited, in which DEX shown 

fast release. However, BMP-2 demonstrated sustained release over 22 days. This scaffold 

provide healing process as well as osteogeneration effieciency.  

On the other hand, incorporation of stem cells into the biomaterials is also a novel 

approach for  tissue regeneration of the cells. For instance, Abbas Shafie has studied in 

vitro and vivo of the cartilage tissue regeneration from rabbit bone marrow mesenchymal 

stem cells (BM-MSC) seeded on electrospun scaffold of PVA/PCL nanofibers[69]. In 

vitro, the MTT assay shown that, the scaffolds backing the chondrogenic differentiation 

of MSC. In vivo, the scaffold with and without MSC loaded were implanted on a rabbit 

full-thickness cartilage defects. To study the cartilage regeneration, histological and semi-

quantitative grading was executed. The results shown that, scaffold seeded with MSC has 

enhanced the healing process as compared to non-seeded scaffolds. These results show 

that, PVA/PCL scaffold seeded with MSC is suitable for graft for articular cartilage 

repair.  

1.8.3 Skeletal muscle regeneration: 

Skeletal muscle made up of around 40% of human body. Skeletal muscle is made of 

various fibers with diameters ranging from 10 to 80mm[70]. These fibers are 

unidirectional and produce enormous amount of force during contraction [71]. If a 

muscle cell gets injured or wounded, it will not be possible to contract, satellite cells are 
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switched on its activity for muscle cells regeneration. However, this healing process 

would create a scar in the tissue and block the muscle function [71]. There are many 

efforts took place to study the initial steps for muscle regeneration such as autologous 

muscle transplant, satellite cells, exogenousmyogenic cells and myoblasts but these 

methods met finite success[72]. Therefore, long term denervation and severe injuries can 

leads to the loss of skeletal muscle activities.   

Muscle tissue engineering materials desire better contracting ability and mechanical 

properties [73]. Muscle cell adhesion and proliferation has been studied using both 

mechanical properties and electric stimulus in the cell culture. Mckeon-fischer K D has 

prepared co-axial electrospun fibers with the core as PCL and Multiwaled carbon 

nanotubes (MWCNT) and blend of (83/17, 60/40, 50/50, and 40/60) poly(acrylic 

acid/poly(vinly alcohol) (PAA/PVA) as the modified outer shell layer [74]. All the four 

components were electrically conductive, although, the scaffold didn‘t show a actuated 

when electric field is applied. The best result was shown at 20V. The MTA assay by 

Soleus and vastus lateralis (VL) muscles extracted from rats, result shown that, 0, 0.14% 

and 0.7% of concentration of MWCNT in the scaffold has not toxic for the cells over 4 

weeks period. According to different percentages of blend solutions PAA/PVA in the 

outerlayer 40/60 has illustrated higher number cells than other scaffolds. Scaffold has 

tensile properties that are higher than the skeletal muscle‘s. More modification of these 

scaffolds for contraction rather than bending can lead to promising scaffolds for artificual 

muscle applications.  
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1.8.4 Nerve tissue engineering: 

Electro-conducting polymers such as polypyrrole (PPy), polyaniline (PANI), polythio-

phene (PT),  poly(3,4-ethylenedioxythiophene) (PEDOT)) show attractive electrical and 

optical phenomena. Thus, they have been researched in the past few decades for various 

applications such as microelectronics, actuators and polymer batteries[75]. The electro-

conducting polymers which hold the specialization of biocompatibility and good 

conductibility can be applied as biosensors and tissue engineering scaffolds [76]. The 

electrospun electro-conducting polymer have great deal for electrically stimulate neurons 

and nerve tissue engineering as well as neural prostheses application for therapeutical 

function [76][77]. Schmidt et al has firstly studied the PC12 cells through polypyrrole 

(PPy) electrosconducting polymer, recognize the growth of PC12 cells on the thin film of 

PPy these enhance the  neurite outgrowth from the cells, these results suggest the greatest 

application of these type of scaffolds for nerve tissue regeneration [78]. Many studies 

have been suggested improvement of the electro conducting polymer for nerve tissue 

regeneration application by  adding cell adhesive[79], neurotrophins[80] and 

topographical features[81]. Jae Y Lee has prepared electrospun nanofibers coated with 

conductive polymer PPy for nerve tissue engineering applications[82]. The PPy-PLGA 

improved the growth of rat pheochromocytoma 12 PC12 cells and hippocampal neurons 

than that of non-coated PLGA as control. This suggest that PPy-PLGA would use for the 

nerve tissue engineering application. Simultaneously, electrical stimulus studies on the 

scaffold suggest that, at stimulus of 10mV/cm has improved the neurties to 40-50% 

longer as well as increment of 40-90% more neurons formation compared to non-

stimulus at same scaffolds. Moreover, aligned scaffolds show more neurites elongation 
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and formation than that of randomly oriented PPy-PLGA fiber scaffolds. These results 

suggest that, good response for electric stimulus and biocompatible polymers prepared by 

electrospinning have great advantages for biomedical applications such as nerve tissue 

engineering.   

1.9 Sputtering technology for biomedical applications: 

Plasma technology is a polymer that has improved the surface properties of the polymers 

without changing their bulk characters. The plasma treated polymer had found great 

application in diverse fields such as automobiles, microelectronics, chemical and 

biomedical industries[83]. The polymer surface properties such as hydrophobicity, 

roughness, chemical structure, conductivity etc. can be molded for various applications. 

The plasma treatment could affect the polymer surfaces by micro-etching, organic 

contamination, cross-linking ,surface chemistry modification and surface coating with 

specific target material[84]. The biomaterials should possess a good mechanical and 

surface characters eligible for biological environment. For instance, for cell adhesion, the 

polymer surface should have low surface free energy, surface roughness and 

hydrophilicity matters. The plasma treatment via magnetron sputtering technology has  

been reimagined by coating the surface of polymer to form biomaterial suitable for 

biomedical applications such as antibacterial activities, biocompatibility and tissue 

engineering. 

There are thermal and non-thermal deposition process in plasma sputtering technology. 

However, non-thermal deposition procedure is highly recommended for polymers 

because it will not damage the bulk properties of the polymer. Magnetron sputtering is 

the technique used for coating the polymer surface. Magnetron sputtering is a technology 
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developed during 1970‘s it is a high-speed and low temperature technique for preparing 

uniform and strong adhesion film on the surface of polymer, ceramics and composite 

materials [85]. Sputtering is simply a call as momentum transfer between the particles 

[86]. Wherein, when an positive ion from sputtering gas (plasma) with high speed strike 

on the surface of target materials and surface atoms is ejected from the target and 

deposited on the substrate[87][88] when the environment is electric and magnetic field.. 

Argon, nitrogen and oxygen are the sputtering gas. However, argon gas is commonly 

used because they don‘t damage the target due to its nobility. The ejected atoms are 

accumulated on the substrate via adjusting the distance between the target and substrate. 

This process leads to the formation of thin film on the surface of the polymer. The full 

process is very fast and requires only low temperature, and high film forming rate as well 

as strong film adhesion[89]. For instance, the composite microfibers of 

Poly(methylmethacrylate/ organically modified montmorrillonite (O-MMT) was 

manufactured by electrospinning incorporation with emulsion polymerization[90]. Here 

the prepared composite microfibers of PMMA—O-MMT was magnetron sputter coated 

with Titanium dioxide (TiO2). The results showed that, increased deposited anatase-TiO2 

and rutile-TiO2 has shown better wettability of the surface without damaging the 

PMMA—O-MMT compound. These composite fibers have UV absorption 254nm. 

Therefore, it has the tendency for photocatalytic degradation of model compound 

methylene blue. Thus, these materials provide a promising application in dye waste water 

treatment.  

The polymer microsphere[91] , thin film[92] and fibers[93]  are sputter coated with 

Ag[93][94], Cu[95], Ti[96], TiO2
 
[97], gold[98],  Thydroxyapatite (HAP), tricalcium 
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phosphate (TCP)[99], amorphous calcium pyrophosphate (CPP) [99] and dicalcium 

phosphate dihydrate (DCPD) [99] for various polymers in microsphere, thin film and 

electrospun fibers for different biomedical applications such as antibacterial and tissue 

engineering applications are discussed below in details.  

1.9.1 Antibacterial coatings: 

Attachment of bacteria to the surface of a polymer can lead to the formation of biofilm. 

Therefore, biofilm resistant polymers for medical field are an important factor. Biofilm 

resistant could be an assistance to the polymer by the addition of antibacterial agents on 

the surface of polymer to prevent the bacterial adhesion. The materials such as medical 

textile, wound dressing, prosthesis and implant materials should display antibacterial 

activity for efficient biological activity.  Antibacterial properties are an important 

parameter to take into account for wound dressing. The antibacterial activities are 

promoted by the addition of some antibacterial components to the fabrics. There are 

many components such as inorganic and organic (drugs) as well as metal.  The inorganic 

agents include titanium dioxide, carbon nanotubes, silver, zinc, zinc oxide, copper, 

gallium and gold nanoparticles [100]. Organic includes some antibiotics [101].  

Among the inorganic antibacterial components silver nanoparticles was well studied 

[102]. The silver nanoparticles was added in the electrospun fibers via Ag ions through 

wetting process[16][17], silver sulfdiazide [18], etc.  The wetting process for the 

preparation of Ag to the matrix has many disadvantages such as uneven distribution of 

nanoparticles, using reducing agents that are toxic, and controlling the size of 

nanoparticles is a difficult task depending on the strong and weak reducing agents 

used[19]. However, the most efficient way of introducing nanoparticles to the surface of 
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polymer or fabrics could be done by using plasma technology. Plasma technology 

provide uniform deposition, less use of resources as well as simple process for the 

coating of antibacterial material such as Ag, Si, Cu etc, to the surface of the polymer than 

wetting process. Sputtering known as physical vapor deposition has been effectively used 

in coating diverse thin film in electronics applications. Therefore, sputter coating of 

metals to enhancing the antibacterial properties are contributed by addition of many 

target materials such as Ag, Ag/Si, Cu, Ti etc..). Therefore, more studies are required to 

compare the antibacterial properties of various materials incorporated with bioresorbable 

polymers.. 

1.9.1.1 Silver (Ag): 

Silver is a transition metal in the periodic table. Silver related compounds or 

nanoparticles have biocidal effect on around 16 specious bacterial because of its toxic 

effect on microorganisms [14][15]. Thus, silver is coated on medical devices for 

antibacterial properties [103].  At low concentration silver nanoparticles show good 

antibacterial efficiency [104]. Moreover, the in-toxicity effect of  AgNP to human 

monocytes cell lines show the application of Ag to the fabrication of medical devices.   

The mechanism of antibacterial activity of Ag on microorganism are not studied well yet. 

It has been shown that in E.Coli the AgNP treated bacteria has shown some pits on the 

cell wall and accumulation of Ag in the cellular membrane. This type of membrane has 

shown increase in the permeability. Bacterial DNA drops its replication ability as well as 

cellular protein and becomes denatured by binding Ag ions or nanoparticles to the 

functional group of the protein[105]. This results in the cellular death of bacteria. On the 

other hand, some reported that Ag nanoparticles will denatures cellular protein suitable 
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for the cellular nutrient transport and damage the cell membrane or cell wall, enhanced 

cell permeability and followed by cell death [15]. It is also noted that, the antibacterial 

efficiency of Ag depends on its shape. Ag Nps with {111} plan lattice basal plane show 

strongest antibacterial action than spherical and rod-shaped nanoparticles and silver ions 

[106].  

Silver has good antibacterial properties. Silver treatment is well known for wound 

dressing materials. The silver is incorporated as silver nanoparticles by the introduction 

through AgNO3 by using reducing agent. However, this type of silver incorporation leads 

to burst release of silver from the material with very high concentration of Ag in the 

wound. These is followed by the sudden reduction of silver because of both bacterial 

consumption as well as reaction with other compounds present in the wound beds such as 

phosphates, chlorine and proteins. Therefore, silver release in the wound should be in a 

controlled manner. In addition, silver nitrate present is an hypotonic and hence it can 

effect strong electrolyte imbalance which could damage the wound site, produce gross 

systematic imbalance which could kill the patients with heavy burns who require large 

doses of silver. But silver sulfadiazide was developed in accordance to minimize the side 

effect of using silver nitrate.  However, the removal of silver sulfadiazide cream from the 

wound surface is by scrapping, it could proclaim the patients painful dressing procedure.  

Moreover, sulfadiazide does not show any hypotonic effect. Therefore, it is mandatory to 

have a better procedure for delivering silver. The efficient way of introducing silver is via 

prolonged period, act against many range of bacteria, require only few changing wound 

dressings, and never interfere with the wound healing process. Thence, sputtering is a 

new field of surface coating of wound dressing materials for prolonged release of silver 
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with efficient antibacterial properties. The optimization of sputtering process is an 

important criterion for better antibacterial properties.  

It is also noted that, silver is the best candidate for wound curing application because it 

will reduce the inflammation [107] and impedes the contraction and improve cell 

epithelialization [108]. The silver nanoparticles are toxic to effect on cell viability these 

leads to decrease in biocompatibility of scaffolds [109]. However, the amount of Ag to 

the scaffolds can be optimized with the antibacterial effects and cellular toxicity of Ag.  

Antibacterial coating on medical textiles is an important criterion to avoid infections 

during surgical process[110]. The silver is coated on textiles via different techniques. But 

it has also reduced the durability of the coatings, which were very poor, hence limiting 

their usage. Therefore, strong adhesion of silver on fabrics is required via sputtering 

coating technique [110]. Cotton fabric with antibacterial properties could have various 

applications. Silver is the most commonly used material to enhance the antibacterial 

properties in cellulosic fibers [110]. Silver incorporation could be made wet or dry 

process. The wet process is change the bulk properties of textiles and also has negative 

impact to the environments. However, dry process such as sputter coating is an 

ecofriendly process which only changes the surface of the matrix. Therefore, Ag was 

cooperated into the cotton matrix in various thickness and studied the antibacterial, 

release of the Ag in water etc. The results suggested that, Ag has shown antibacterial 

activity against Staphylococcus aureus, Escherichia coli and Candida albicans [110]. And 

also sputter coating has improved the water contact angle of the cotton fabrics. Thus, 

these ideas sputtering could be added to nanofibers for antibacterial activity. 

Simultaneously, Ying-Hung Chen has coated sputter coated the PET fabrics in high 
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power impulse magnetron sputtering which provide highly concentrated plasma so these 

will support strong adhered films[111]. These results shown that, the sputter coated more 

than 1 min films has shown great antibacterial performance via bacteriostatic (>2.0) and 

bactericidal (>0) effects, based on JIS standards. Furthermore, the coated fabrics have 

shown capability to hold the antibacterial properties over 20 cycles of washing, indicating 

long-term durability for the fabrics.   

The wound dressing mats of polymer sheet and electrospun fiber scaffolds was sputter 

coated with Ag and studied its antibacterial properties.  Xiuju Liu has studied the 

influence of magnetron sputter coating of nano-silver on polyetheretherketone (PEEK) 

and studied its cytotoxicity and antibacterial properties[112]. PEEKs were sputter coated 

with Ag 3nm, 6nm, 9nm and 12nm. The antibacterial properties and bacterial adhesion to 

the surface was studied. The homogeneous Nano silver was coated on the surface and it 

shown that, water contact angle was increased as well as there was no cytotoxicity for the 

CCK-8. And also the coating provides good adhesion of bacterial towards PEEK and also 

improved antibacterial activities towards Streptococcus mutans and 

Straphylococcusaureus.  

The combination of electrospinning and sputtering technology can make many novel 

composite fibers with diverse applications in biomedical such as wound dressing mats 

with good biocompatibility and antibacterial properties. The electrospun microfibers was 

coated with Ag by DC magnetron sputtering [94]. The electrospun scaffolds of 

poly(glycerol sebacate)/poly(3-caprolactone) (PGS/PCL) was coated with Ag and its 

antibacterial properties and silver release behavior was studied. PGS/PCL shown good 

mechanical and thermal behavior due to increase in fiber diameter and decrease in fiber 
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pore size when sputter coated with Ag. The fiber scaffolds has shown gradual release of 

Ag which contribute for antibacterial activity. Therefore, this material could possess good 

application in wound dressing and bandages. Moreover, implant prosthesis also requires 

antibacterial properties to avoid infection after surgery. Incorporation of Ag with SiO2 

was used in implantic prosthesis after hernia repair can leads to infections in the 

abdominal area, therefore prevention is an important goal. Giuliana Muzio has studied the 

effect of polypropylene prostheses coated with silver-silica composite (Ag/SiO2) layer by 

sputter coating technique for improving the substrate antibacterial and biocompatibility of 

the prosthesis [113]. The prepare meshes hernia prostheses (CMC) consist of two layers 

microporous light mesh and thin transparent film of polypropylene. They have sputter 

coated the Ag/SiO2 composite on CMC meshes and microporous mesh layer alone. The 

sputtering process was optimized via addition testing biocompatibility and antibacterial 

properties. And it is noted that, sputter coated with CMC improve antibacterial property 

but reduced biocompatibility. However, sputter coated meshes alone show good 

antibacterial and biocompatibility. And also, fiber meshes coated with Ag/SiO2 enhance 

the growth of seeded fibroblast without creating apoptosis or necrosis of the fibroblast in 

addition meshes exhibited good antibacterial property as well. .  

1.9.1.2 Copper (Cu):  

Other than Ag the electrospun scaffolds was sputter coated with Cu for antibacterial 

property [114][115]. Cu is cheaper than Ag therefore Cu coating can provide economical 

wound dressing mats. PLA scaffold was DC magnetron sputter coated with Copper (Cu) 

[95]. The PLLA scaffold has increased the hydrophobicity in proportion to the plasma 

treatment time. The antibacterial testing concludes that, modified composite scaffold 
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have bacteriostatic effect in which 30 and 50% of bacterial has reduced. And also it is 

found that copper have strong antibacterial effect than copper oxide. Therefore, this type 

of composite material can be used for economically cheap wound dressing mats for 

having antibacterial effect. 

1.9.2 Tissue engineering: 

Plasma technology has also emerged recently on tissue engineering application such as 

vascular grafting, stem cell therapy, artificial muscle sputter coated with conductive gold. 

Therefore, the good biocompatible polymer had provided a platform for cell adhesion, 

proliferation and differentiation. Therefore, if stem cells are added to the polymer 

scaffold which can provide better tissue regeneration environment. Stem cell therapy is a 

new platform for substituting many complicated surgical procedures. Stems cells loaded 

materials has gained much attention recently [91]. Here in,  PCL microsphere 

incorporated with sputter coated Au has used as a platform for the differentiation of 

cardiomyogenic cells from human embryonic stem cells. Presently, here they 

demonstrated the PCL microsphere sputter coated with gold particle for 5min and without 

coating [91]. Then they added human embryonic stem cells (hESCs) to the microsphere. 

And it noted that, AuMS shown higher cardiac differentiation in because Au play as 

mediator for expressing genes on day 4 and day 14 which are suitable for the  

cardiomyogenic differentiation than MS. These papers also suggest AuMS is non-

cytotoxic material.   

Moreover, The PLLA and PEG fibers was electrospun and sputter coated with calcium 

phosphate for bone tissue engineering applications. Here, they just combined 
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electrospinning and sputtering technique are feasible for fabricating biopolymer scaffolds 

for biomedical applications[116].  

There are many novel composite material has emerged due to the fusing of two precious 

technique such as electrospinning and sputtering technique[117]. A novel material for 

vascular tissue engineering was studied. These composite materials was prepared by 

electrospinning and sputtering technique. In this, beresosable polymer PCL and PHBV 

was incorporated in 1:2 (v/v) and sputter coated with  Ti. Firstly, they optimized the 

sputtering process which would not damage the macro structure of the scaffolds. The 

biocompatibility of the prepared composite mats was studied with hybridoma of the 

endothelial cells of human umlical vein and human lungs carcinoma (EA.hy.926 cell 

line). The results from cell adhesion, viability and secrection of IL8 interleukin-8 (IL8), 

interleukin-6 (IL6) ang vasculat endothelial growth factors (VEGF) demonstrate that cell 

adhesion has improved for ti coated scaffolds as well as it determine that novel scaffolds 

have better proangiogenic activity.  

And also a  novel approach was incorporated to make a fiber scaffold suitable for 

artificial muscle or smart devices for human body was synthesized by using 

electrospinning and sputtering technology[98]. A core-shell structure was made via first 

electrospinning the PMMA in optimized form to get a uniform fiber and later PMMA 

was coated with gold for inducing the conductivity and mechanical properties of the 

scaffolds. Later on, the polyaniline (PANI) was coated on the scaffolds via in situ 

electrochemical polymerization starting with aniline and using sulfuric acid as oxidizing 

agent Figure (4). PANI coated metalized fiber scaffolds in similar to core-shell structure 

has shown fascinating electrochromic properties where color changes occur when applied 
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voltage was simultaneously switched from 0 to 1V and vice versa. In vitro 

biocompatibility test reveal good cell adhesion tested on human amniotic fluid stem cells 

show a better for eukaryotic cells. Moreover, PANI coated exhibit high cell adhesion 

property. Therefore, this type of web could be used for preparing smart artificial muscle 

devices via simple and versatile preparations technique such as electrospinning and 

sputtering.  
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Figure 4: Schematic representation of electrospinning and sputtering of electrospun for 

muscle tissue engineering applications [98]. 
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EXPERIMENTAL WORKS 

1.10 Materials 

1.10.1 Poly(caprolactone) (PCL) 

Poly(caprolactone) PCL was first invented in the 1930s and it became commercially 

accessible due to the property of a synthetic polymer decomposed by 

microorganisms[118]. PCL has a low melting point (59-60
0
C), a hydrophobic and semi-

crystalline polymer which has good solubility in organic solvents such as benzene; 

toluene and cyclohexane as well as it can be easily blended with other polymers. This 

property makes PCL great attention in biomedical applications and also PCL is an FDA-

approved for biomedical uses[119]. PCL was synthesized by ring open polymerization of 

monomer ε- caprolactone incorporation with low molecular weight alcohols to monitor 

the molecular weight of the polymer Figure (5) [118]. PCL decompose by hydrolysis, 

where the byproduct is suitable for natural metabolic pathways as well as it will not 

change the surrounding pH [119].  

 

 

 

 

Figure 5: Chemical equation for the synthesis of PCL 
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1.10.2 Poly vinyl alcohol 

Poly (vinyl alcohol) is a hydrophilic polymer synthesized industrially by hydrolysis of 

polyvinyl acetate as shown in the equation 1 below: 

[CH2CH(OAc)]n + C2H5OH → [CH2CH(OH)]n + C2H5OAc 

There are different grades of PVA available commercially. They are fully hydrolyzed and 

the partially hydrolyzed PVA build upon the amount of acetate group left the backbone of 

the polymer structure [120]. PVA is a hydrophilic polymer with good biocompatibility 

and toxicity. Also, its good chemical stability, physical (melting point 200
0
C) and 

mechanical properties has led to many applications such as cosmetics, medical, 

pharmaceutical, food and packing industries. Ultrafine PVA fibers are produced by 

electrospinning process which had obtained potential application in biomedical 

engineering. In drug delivery, PVA can hold many hydrophilic antibiotics and drugs. 

Also it is noted that incorporation of PVA with a hydrophobic polymer such as PCL can 

be used for sustained release of drugs in a suitable manner [121].  

1.10.3 Gentamicin sulphate: 

Gentamicin sulphate Figure (6) is an antibiotic invented in 1963 from micromonospora 

purpurea [122]. It belongs to the aminoglycosides family. The presence of hydroxyl 

group makes it easily dissolve in water but slightly soluble or insoluble in organic 

solvents.  
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Figure 6: Chemical structure of Gentamicin Sulphate 
 
 
 
 
Gentamicin quantification was done by using ninhydrin as a reaction compound [123]. 

The ninhydrin reacts with primary and secondary amines to give a purple color. These 

color changes can be studied calorimetrically. The gentamicin ninhydrin mixture gives 

linear relationship ranges from 1-80ug/mL at 400nm wavelength [124].  

 

 

Table 1: Physical properties of gentamicin sulphate 

Physical properties of gentamicin sulphate 

Physical appearance Amorphous powder 

Solubility Soluble in water and phosphate buffer 

solution at pH 7.4 and insoluble at 

acetone and ethanol 

Chemical properties 

Reaction with ninhydrin Give rise to purple color 
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1.10.4 Solvents: 

 

 

 

Table 2: Solvents used for electrospinning 

Solvents Suppliers Specifications Item No 

Chloroform BDH laboratory 

suppliers 

99.8%  purity 152834E 

Dimethyl 

formamide (DMF) 

Riedel-de Haen 

Germany 

99% purity  

Absolute Ethanol SISCO research 

laboratory PVT, 

Mumbai India 

99% purity 11526689 

 

 

 

1.11 Scaffolds preparation equipment: 

1.11.1 Electrospinning: 

1.11.1.1 Setup-operating principles: 

The electrospinning is a simple technology exists of four main components Figure (7): 1) 

high power supply 2) syringe pump 3) syringe needle with solutions 4) a collector for 

fiber deposition. The electric field is applied to the polymer solution where the positive 

pole is connected to the needle and negative electrode to the collector. Hence, when the 

voltage is applied the repulsive charge is accumulated at the tip of the needle which exist 
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in the form of a hemisphere[21]. The solution at the tip of the needle should possess high 

surface energy and surface tension within the electric field. When the repulsive charge 

overcomes the surface tension, this leads to the formation of Taylor cone. This will direct 

to the formation of polymer solution towards the negative electrode as a collector and 

produce fibers. These polymer solution leads to the evaporation of solvents, instability 

and finally, polymer solution is deposited on the collector as dry fibers ranging from 

nanometers to micrometers[22].  

 

 
 

Figure 7: Electrospinning apparatus consists of a) flow meter for syringe pump b) power 

supply c) needle connected d) rotating collector drum e) chamber protect from the high 

voltage. 
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1.11.1.2 Electrospinning parameters: 

There are many parameters control the electrospinning process; Solutions parameters and 

processing parameters. Solution parameter includes concentration of the polymer 

solution, molecular weight, viscosity, surface tension, solvents and conductivity/surface 

charge density. As well as processing parameters along with voltage, collector/needle 

distance, flow rate and the diameter of the syringe and also ambient parameters like 

humidity and temperature also play a major role in the fabrication of nanofibers for 

electrospinning process [125]. Customized electrospun fibers are invented by changing 

the parameters above [126].  

1.11.2 Magnetron Sputtering: 

Sputtering is simply called as momentum transfer between the particles Figure (8) [86]. 

Wherein, when a positive ion from sputtering gas with high-speed strike on a surface 

target of a material and surface atoms are ejected and deposited on the substrate [87][88]. 

Argon gas is commonly used as a sputtering gas. The ejected atoms are accumulated on 

the substrate via adjusting the distance between the target and substrate. The number of 

atoms exited from the surface per incident ion is known as sputtering yield ‗S‘. S value 

depends on many parameters such as target material composition, experimental 

geometry, binding energy and properties of incident ions. And also experimental 

parameters such as voltage and current. In a conventional sputtering machine, the cathode 

is connected to the target and anode is connected to the substrate where the plasma in 

between them Figure (8). 
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Figure 8: Plasma sputtering technology 
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Figure 9: Schematic representation of sputtering technology [127]   

 

 

The DC and RF sputtering process are mainly varied on the power supply installed. In 

DC sputtering process metals are only used as target for coating. However, in case of RF 

insulators are used as a target for coating purpose. This is mainly achieved by providing 

the RF potential to the target. In reality, when insulators are used as the target; their 

charges are accumulated on the surface of the target after striking of positive ions. This 

would make target surface inaccessible for the further bombardment of ions. Therefore, 

to inhibit this process both positive ions and electrons are bombarded directly to the 

insulator target [86]. It is achieved by applying RF power supply, it will lend enough 

energy for oscillating electron in the presence of alternating field to originate ionizing 

collision and a self-preserved discharge is maintained. However, Magnetron sputtering 

incorporation to DC/RF sputtering could enlarge the sputtering yield by applying a strong 
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magnetic field along the sputtering target for the confinement of plasma nearby target 

surface. In which, electric field  ⃗⃗  and magnetic field   ⃗⃗  are applied for electronic motion. 

Electron experience well-known Lorentz force in the magnetic field and an electric field 

force in electric field which leads to the circular motion of the electron nearby the target 

material and enhances the collision with the target and improves the sputtering yield. In 

sputtering process are take part in less vacuum because air contaminates such as oxygen 

or other gas impurities could create impurities deposition on the surface of the substrate 

and reduce plasma. Steps of plasma sputtering process is explained in Figure (9). 

 

Figure 10: Factors depends on the plasma sputtering techniques. 

 

1.12 Fiber preparation methods and electrospinning conditions: 

 

Plasma 

Secondary 
electrons 
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1.12.1 Optimization of PVA and PCL individual fibers and multilayered structure. 

Polyvinyl alcohol (PVA): 10 wt%/v% PVA was dissolved in deionized water and stirred 

for 3h at 80
o
C. The dissolved solution was electrospun to produce PVA fibers. 

Electrospinning parameters are voltage 15kV, distance 10cm, needle size 21G, and flow 

rate 1mL/h. 

Polycaprolactone (PCL): 5.5 to 11 wt% of PCL was dissolved in 9:1 (wt%/wt%) 

CF:EtOH and stir for 1h. And also 8.5 to 12 (wt%) PCL solution was prepared in 1:1 

(wt%/wt%) DMF:CF and stirred for overnight. Electrospinning parameters are voltage 7-

15kV, distance 15cm, needle size 21G, and flow rate 1mL/h Table (4). 

Multilayered (PCL-PVA-PCL) electrospun fiber loaded with drug: 10% (wt%/v%) 

PVA was dissolved in deionized water with 0mg/mL, 1mg/mL (1% wt/wt%), 2mg/mL 

(2% wt/wt%) and 4mg/mL (4% wt/wt%) of gentamicin sulphate (GS) and stir for 

overnight at 80
0
C. On the other hand, 11 wt% of  PCL was prepared in 1:1 (wt%/wt%) 

DMF and CF and stirred for overnight. The electrospinning parameters are voltage 15kV, 

distance 15cm, needle size 21G, and flow rate 1mL/h, in which, the outer layers was 

electrospun for 2 hours each and middle layer loaded with drugs was electrospun for 1h 

respectively Table (6). 

1.12.2 PCL sputter coated with Silver (Ag) 

The PCL nanofibers were sputter coated with 99.9% of Silver target (Plasma Technology 

Limited  83 Tat Chee Avenue, Kowloon Tong, Hong Kong) and applied base pressure 

1*10
-3

 Pa and working pressure 0.7Pa sputter coated for 30s, 60 and 120s. The applied 

voltage was 340-350 V and the current was 0.09A. 
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1.12.3 PCL-PVA-PCL sputter coated with Silver (Ag) 

The PCL-PVA-PCL nanofibers with and without gentamicin sulphate were sputter coated 

with Ag with base pressure of 1*10
-3

 Pa and working pressure 0.7Pa and coating for 30s.. 

The applied voltage was 340-350 V and the current was 0.09A. 

1.13 Characterization: 

1.13.1 Scanning Electron Microscopy (SEM) and EDX. 

The fiber morphology was characterized using the SEM images. The SEM images were 

obtained by using an SEM, LEO 1550 equipped with Schottky field emission gun (10 

kV) and Robinson backscatter detector and FEI Quanta 200 scanning electron 

microscopy Figure (11). The all-fiber scaffolds were sputter coated with gold for 1min to 

minimize the charging effect. The entire fiber diameter was characterized by using 

imageJ an imaging processing software.  All fiber diameters were measured and 

statistically analyzed.  
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The elemental composition of the fiber was measured by using Energy Dispersion X-ray 

spectroscopy (EDAX). EDAX was worked on SEM instrument in which the sample was 

bombarded with an electron beam where some electron collides with the specimen atoms 

own electrons and kicking them off in the process. A vacant is created inside the shell of 

the specimen, therefore, an electron from higher energy level is filled the vacant by 

emitting energy as X-rays [128]. Each element has its own X-ray emission range. The 

EDX tool was studied by using quanta 200 SEM Figure (11) under liquid nitrogen. The 

EDX tool was also referred for mapping the elemental composition in the samples.  

 

 

Figure 11: FEI Quanta 200 scanning electron microscopy (SEM). 
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1.13.2 The Fourier Transform Infrared Spectroscopy ( FT-IR)  

The Fourier Transform Infrared Spectroscopy (FT-IR) was implemented to study the 

presence of the functional group in the scaffolds. FTIR used was Spectrum 400 FT-

IR/FT-NIR Spectrometer (Perkin-Elmer) with wavelength ranges from 4000cm
-1

 to 

400cm
-1

 Figure (12) 

 

 

 

Figure 12: TGA FTIR set up (FT-IR Spectrometer Frontier/ TGA 4000 – Perkin Elmer) 
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1.13.3 Thermogravimetric analysis (TGA) 

 Thermogravimetric analysis (TGA) was done to study the heat resistant of the 

material with and without incorporation of drugs. TGA was measured on using 

Thermogravimetric Analyzer - Pyris 6 (Perkin-Elmer) Figure (13). 2-7mg of samples was 

taken and loaded on platinum for reading the weight loss at a rate of 10C/min from 

normal room temperature to 500C in a dry nitrogen environment. 

 

 

 

 

 

 

 

 
Figure 13: Thermogravimetric Analyzer - Pyris 6 (Perkin-Elmer) 
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1.13.4 UV-VIS spectrophotometry: 

UV-VIS spectrophotometry was used for the quantification of gentamicin sulphate 

release by using ninhydrin-gentamicin assay, which provide purple color and absorbance 

peak at 400nm. The instrument uses the ultraviolet-visible lights for the analysis of the 

chemical components concentration present. In absorption spectroscopy, light was 

absorbed by the sample solution and emit a specific amount of light. The absorbance of 

light is mainly due to the excitation of the electrons from ground state to excited state by 

the chemical components present in the sample. From this information; absorbance was 

measured to study the quantitative analysis of the colored compound present in the 

samples by comparing with the calibration curve. UV-Vis works in the electromagnetic 

spectrum from 190-750nm [129].  The UV-VIS spectroscopy used for the experiment 

was Agilent technologies cary 60 UV-Vis Figure (14) in Anti-doping Laboratory Qatar. 

 

 

 

 

Figure 14: UV-VIS spectroscopy (Agilent technologies cary 60 UV-Vis) 
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1.13.5 Inductively coupled plasma mass spectrometry  ICP-MS: 

 Inductively coupled plasma mass spectrometry (ICP-MS) is a metal and non-metals at a 

concentration less than 10
15 

(part per quadrillion, ppq) on non-interfered low background 

isotopes. This method mainly works by ionizing the sample via inductive couple plasma 

and then the mass spectrometry categorizes ions based on their mass and quantify them. 

The ICP-MS was used to quantify the presence of Ag release in deionized water. It was 

done by using ICP-MS NexION 300D model Figure (15). 

 

 

Figure 15:  ICP-MS NexION 300D 
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1.14 In-vitro drug delivery of gentamicin Sulphate 

1.14.1 Gentamicin-ninhydrin assay: 

Gentamicin quantification was done by using ninhydrin (Biochemical Prod 440605V) as 

a reaction compound [123]. The ninhydrin reacts with primary and secondary amines to 

give a purple color. These color changes can be studied calorimetrically.  

1.14.1.1 Preparation of Phosphate buffered solution (PBS): 

One PBS tablets (MDL; MFCD00131855) was mixed with 200mL (as per the instruction 

on the PBS tablets bottle) of distilled water (pH 7.4) at room temperature to obtain 0.01 

M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride and pH 

7.4. 

1.14.1.2 Preparation of Ninhydrin reagent: 

Ninhydrin reagent (1.25wt/v%) was prepared by dissolving 0.0622g of ninhydrin in 5mL 

PBS solution (pH 7.4) to obtain concentration of 12.5mg/mL of ninhydrin solution. The 

mixture was vortexed for 10min followed by sonication for 30min.  The prepared 

ninhydring should be consumed within 3 days if the solution was kept at room 

temperature 

1.14.1.3  Preparation of calibration curve: 

The GS standard solution were prepared by serial dilution of 50mg/mL GS to obtain a 

ranges of 0-80ug/mL of gentamicin solution according to the Table (3) and used for the 

calibration curve Figure (16).  
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Table 3: Preparation of standard solutions protocol 

Final 

Concentration 

g/l 

Amount A 

(L) 

A (g/ml) PBS (l) Vprep (l) V final  

(l) 

0 0 0 700 700 700 

1 140 5 560 700 700 

5 420 10 420 840 700 

10 560 20 560 1120 700 

20 630 40 630 1260 700 

40 887 60 443 1330 700 

60 1190 80 397 1587 700 

80 302 500 1588 1890 700 
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Figure 16: Calibration curve for ninhydrin - gentamicin sulphate assay 

 

 

1.14.1.4  Drug delivery assay of prepared scaffold: 

The fiber scaffolds were weighted around 30-50mg and immersed in 7mL of PBS buffer 

solution (pH 7.4) and incubated at 37
o
C. And aliquot of 2mL of each sample at specific 

time interval 0.5, 1, 2,3,5,24,48,144 and 168hrs was collected. And removed volume was 

replaced by 2mL PBS buffer solution to make same sink condition. The collected 

samples were stored at 4
0
C until analyzed.  



62 
 

Later on, Ninhydrin (2mg/mL): sample solutions (1.5:5) ratio was mixed together and 

heated in a water bath at 95°C for 30 min followed by cooling for 10min. Finally, 

UV-VIS spectroscopy was measured under 400nm to find the release of GS during 

specific interval of time Figure (17). 

Cumulative release of drug was calculated by using following equation 1.  

Cumulative drug release % : = 
  

  
        (1) 

Where Mt was the amount of GS released at time (t) whereas   the amount of GS added 

to electrospinning scaffold: 

 

 

 

 

Figure 17: Schematic procedure to study the drug release 
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1.14.1.5 Encapsulation efficiency: 

Firstly 5-8mg of electrospun scaffolds was mixed with 1 mL of chloroform and vortexed 

for 5min until the PCL layer mix well. Henceforth, 1mL of PBS (pH 7.4) was added to 

the solution and mix for 30min by shaking at 1000rpm. Hereafter, the solution mixture 

was centrifuge at 6000rpm for 5min. Then, 800ul of supernatant was collected and 

blended with 240uL of ninhydrin solution (2mg/mL) (1.5:5 rations). Then for the 

complex formation of gentamicin-ninhydrin the solution was heat at 95
0
C for 30min and 

later on to stop the ninhydrin-gentamicin sulphate reaction the solution was cooled for 

10min. Subsequently, UV-VIS absorbance was measurement at 400nm for the solution. 

The gentamicin concentration in the scaffold was calculated from the calibration curve. 

Encapsulation efficiency was calculated by using the following Equation (2). 

                            
                                      

                                    
      (2) 

1.15 In vitro release of Ag: 

In vitro release of Ag was carried out as in Figure (18). 7-10mg of the PCL-PVA-

PCL/Ag fiber scaffold in a 15mL test tube and 5 mL of deionized water were added to 

the test tube. Incubate the test-tube in water-bath at 37
o
C. At each interval of time, collect 

1 ml of the deionized water in the test tube and refill with 1ml to establish same sink 

conditions. Finally, to validate the amount in parts per billion (ppb) of silver present in 

the solution was studied by using ICP-OES. 
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Figure 18: Sequential representation of Ag release from Deionized water 

 

 

 

1.16 In-vitro bio-compatibility studies: 

1.16.1 Cell lines: 

Human keratinocytes, HaCaT cell line was obtained from Cell Line Services (Germany) 

and human fibroblasts, Wi38 cell line was obtained from American Type Culture 

Collection (USA). Cells were grown in DMEM (Dulbecco's Modified Eagle's medium) 

supplemented with 10% fetal bovine serum (FBS, SIGMA, Germany) and 1% 

Penicillin/Streptomycin (SIGMA, Germany) at 37°C in a humidified atmosphere 

containing 5% CO2. Cells were passaged when they reached confluence of 70% and used 

for the experiments.  
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1.16.2 Cell seeding 

HaCaT and Wi38 cells were seeded on 96well plate (Nunc 96-Well) at a cell density of 

7000 and 14000 cells respectively in 200L of the media. After 24h cells were treated 

with scaffolds. The samples were cut into small square cubes with 0.5cm x 0.5cm by 

using ruler and scissors and then sterilized under UV for 15min each side. The sterilized 

scaffolds were added to the 96 well plates and incubated for 48h and 72h respectively.  

1.16.3 In-vitro quantitative cell viability assay: 

Sterilized square shaped sample were added to Wi38 and HaCaT in 96 well plate with 

density of 14000 and 7000cells/well. Afterwards, 96well plates was incubated for 48h 

and 72h in a humidified atmosphere of 5% of CO2. Followed by incubation for 

subsequent period the viability test was accessed by Alamar blue assay. In alamar blue 

assay,  add 20ul of alamar blue (7-hydroxy-10-oxidophenoxazin-10-ium-3-one,[130] 

were added to the cells and incubated for 2h in a humidified atmosphere of 5% of CO2. 

The fluorescent was measured in Tecan multimode reader M200 Pro at excitation 

between 570nm and an emission at 590 nm respectively Figure (19).  
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Figure 19: Schematic representation of In-vitro cell toxicity test 



67 
 

1.17 Antibacterial Studies: 

1.17.1 Medium preparation : 

Luria broth (LB) medium was prepared by taking 28g of nutrient agar (HiMedia 

laboratories Pvt.Ltd. M001-500G) was mixed with 1L of distilled water. The prepared 

mixture was autoclaved at 121
o
C for 1h. Followed by sterilization the LB agar medium 

was pour into the pteridishes to cool down and solidify. All the above procedure was 

done under laminar to avoid contamination. 

Nutrient broth (NB) medium was processed by suspending 25g in 1000 ml 

purified/distilled water.  The prepared mixture was heated autoclaved at 121
o
C for 

1h[131]. The NB medium was used for the preparation of bacterial suspension 

incorporation with the samples.  

Phosphate saline solution was prepared by mixing 0.91% NaCl in distilled water.  

1.17.2 Antibacterial testing and spreading the plates.  

The antibacterial testing was carried out for the PCL only, PCL fibers sputter coated with 

Ag at 30s, 60s and 120s sputtering time, multilayered (ML) structure of PCL-PVA-PCL 

electro spun fibers incorporated with gentamicin sulphate as well as sputter coated with 

Ag. They are labeled as PCL only, PCL/Ag 30s, PCL/Ag 60s, PCL/Ag 120s, ML only, 

ML/GS 1%, ML/GS4%, ML /Ag 30s and ML/GS/Ag respectively with 3 repetition to 

evaluate standard error.  



68 
 

Firstly, the bacterial was distributed all along the medium via streaking technique. In 

which the sterile loop was used to collect bacterial colonies from streak plated petridish 

to a PBS solution.  

Secondly, the samples were cut into small cubes with size 1.5x1cm with ruler and 

scissors. The scaffold samples were sterilized under UV for 30min both sides. Later on, 

the cubes was placed in the 2mL of bacterial suspension of gram positive Bacillus 

pumilus and gram negative E.coli in 50mL centrifuge tube. And the centrifuge tube was 

incubated at temperature of 28
O
C and shaking at 100rpm respectively. After each interval 

of time 2h and 6h the 10uL of suspension was mixed with 990uL of sterile saline solution 

(B) in an eppendorf tube. And followed by, pipette 100uL of bacterial suspension from B 

to the appropriate labeled petri-dishes and spread by using spreader for uniform 

distribution of colonies. Subsequently, the petridishes was incubated at 37
o
C for 24h. 

And picture was obtained and number of colonies was counted. The whole process was 

explained in figure shown below Figure (20).  
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Figure 20: Schematic procedure for antibacterial testing 
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RESULTS AND DISCUSSIONS 

1.18 Optimization of PVA and PCL individual fibers, and multilayered structure. 

1.18.1 Poly (vinyl alcohol) PVA: 

PVA 10wt%/v% solution was electrospun to prepare nanofibrous mats, where the 

electrospinning parameters applied are voltage 15kV, flow rate of 1ml/h, and needle tip 

to collector distance of 10 cm. Scanning electron microscope of the electrospun 

nanofibers are given in the Figure (21). A beadles uniform fibers with an average 

diameter of 107.25±21.07 nm is obtained. 

 

 

 

 

 

Figure 21: a) SEM image of 10wt%/v% PVA (electrospinning parameters are applied 

voltage 15kV, flow rate of 1ml/h, and needle tip to collector distance is 10 cm) 

(magnification: 1m). b) Normal distribution of fiber diameter 
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1.18.2 Polycaprolactone (PCL): 

PCL solution was prepared in 1:1 (wt/wt%) DMF:CF at different weight percentage of 

8.5wt%, 10wt%, 11wt% and 12wt% respectively. The electrospinning parameters are 

described in Table (4). SEM results show that, at 8.5wt% and 10wt% of PCL, it has 

shown some beads on the scaffold structure. However, at 11wt% and 12wt% uniform 

fiber with diameter around 407.04±112.1nm and 901.14±350nm respectively Figure (22) 

The optimization of polycaprolactone was done by using different solvents at various 

weight percentages to obtain uniform fibers with smaller diameters Table (4).  PCL is a 

hydrophobic polymer which is easily soluble in chloroform. However, chloroform has 

lower electric conductivity [42]. As a result, insulating polymer solution could not beat 

the surface tension in high electrostatic force. Therefore, introduction of conductive 

polymer solution is essential for improved electrospinning process. So, DMF show 

moderate conductivity due to its dielectric constant [132].  

There is critical minimum concentration (Ce) required for the formation of beaded fibers. 

The concentration above Ce shows a reduction in the beads as well as increase in the 

fiber diameter and uniformity. Concentrations lower than Ce shows drops like 

electrospraying. The value of Ce depends on polymer molecular weight, solution and 

chemical properties of the polymer.  Polymer solvent plays an important role in selecting 

proper Ce and also morphology of the fiber. Hence, selection of solvent is an important 

factor for better fiber production in electrospinning process. Therefore, the critical 

concentration for 1:1 wt%/wt% of DMF: CF is 10% of PCL Figure (22). 11wt% of PCL 

was used for the further production of electrospun fibers due to more uniform beadles 

fiber with average diameter of 407.04±112nm Figure (22e) 
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Table 4: Electrospinning parameters applied for optimization of PCL fibers. 

 Weight% 

of the PCL 

Solvents ration 

(wt/wt%) 

Flow 

rate 

(ml/h) 

Distance 

(cm) 

Voltage 

(kV) 

Needle 

size (G) 

1 8.5% 1:1 DMF:CF 1 15 15 21G 

2 10% 1:1 DMF:CF 1 15 15 21G 

3 11% 1:1 DMF:CF 1 15 15 21G 

4 12% 1:1 DMF:CF 1 15 15 21G 

 

 

Table 5: Average fiber diameter of the prepared PCL mats in different weight percentage. 

Weight percentage of PCL Average fiber diamter (nm) Beads/uniform 

 

8.5% PCL 1:1 CF:DMF 218.2±100.6 Beads/not uniform 

10% PCL 1:1 CF: DMF 365.5±144.5 Beads/not uniform 

11% PCL 1:1 CF: DMF 407.0±112.1 No beads/uniform 

12% PCL 1:1 CF: DMF 901.1±350.5 No beads/uniform 
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Figure 22: SEM images of electrospun PCL in 1:1 (wt/wt%) DMF:CF at different weight 

percentage of PCL a) 8.5wt%PCL, b)10wt%PCL, c) 11wt%PCL, d) 12wt%PCL e) 

Average fiber diameter and f) Fiber diameter distribution of 11wt%PCL (magnification 

10m). 

 

 

 

1.19 PCL coated with Ag 

The individual PCL fibers was sputter coated with silver at different sputtering time 30s, 

60s and 120s with base pressure of 1x10
-3

pa, working pressure 0.7Pa, voltage 340-350 V 

and the current was 0.09A. The prepared electrospun sputter coated fibers are labeled as 

PCL only, PCL/Ag 30s , PCL/ Ag 60s and PCL/ Ag 120s.  

The morphology of the fibers was characterized by SEM, elemental analysis by EDX and 

XRD. Moreover, cytotoxicity and antibacterial properties was studied for the optimized 
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coating time for the further preparation of multilayered electrospun fibers loaded with 

drug and sputter coated with Ag for the biomedical application.  

 

1.19.1  Scanning Electron Microscope (SEM) & EDX: 

The SEM, EDX and mapping of Ag in electrospun PCL fibers was shown in Figure (23). 

As mention in previous section, 11wt% of PCL was used for the preparation of 

electrospun fibers. The SEM images at Figure (23a), (23b) and (23c) demonstrate a 

uniform distributed beadles fibers. As shown in the EDX peaks in Figure (23a), (23b) and 

(23c) the Ag has increased for 30s, 60s and 120s with a weight percentage of Ag 1.65, 

3.58 and 4.58 % respectively. Moreover, the mapping has shown a clear distribution of 

Ag at different sputtering time for sequential coating time. However, the presence of 

aluminum peaks was shown on each EDX peaks because sample fiber was held by the 

aluminum foil for getting proper surface for EDX characterization.  

 

 



75 
 

 

 

 

Figure 23: SEM images of PCL coated with Ag a)PCL/Ag 30s  b) PCL/Ag 60s 

and c) PCL/Ag 120s (Magnification 10m) 
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1.19.2 X-ray diffraction (XRD). 

The XRD of PCL sputter coated with Ag at different sputter time is shown in Figure (24). 

The peaks at 21.25
0
 and 23.42

o 
related to PCL fibers. Contrarily, there are four various 

peaks noted at 38.46, 44.52, 64.72 and 77.48 for PCL/ Ag 30s, 38.31, 44.44, 64.75, 77.6 

for PCL/Ag 60s and 38.15, 44.51, 64.64 and 77.64 for PCL/ Ag 120s respectively. The 

illustrated peaks demonstrate for face centered cubic structure of Ag phase with reflection 

planes at (111), (200), (220) and (311) respectively [133] .  

 

 

 
Figure 24: XRD spectra for electrospun PCL sputter coated with Ag at different time a) PCL 

peaks b) Indexing the presence of silver in PCL only, PCL/Ag 30s, PCL/Ag 60s and PCL/ Ag 

120s. 
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1.19.3 Cytotoxicity of Ag: 

The cytotoxicity of the electrospun nanofibers was studied by using Wi38 and HaCaT 

cell line for as PCL, PCL/Ag 30s, PCL/Ag 60s and PCL/Ag 120s for 48 hours and 72 

hours Figure (25). In the case of Wi38 Figure (25a), at 48h of incubation shows toxicity 

affect at the PCL at 120s coatings compared with PCL as control. As time passes, the 

silver molecules are released at it exhibit toxic effect for the 72h of incubation. Because 

PCL/Ag 30s, PCL Ag/60s and PCL/Ag 120s has shown p<0.05 compared with PCL as 

control. However, PCL fiber displayed some reduction in the cell growth, these could be 

due to the solvent present in the electrospun fiber PCL such as DMF and CF. But there is 

a clear dependency on toxicity versus amount of silver present in the electrospun PCL 

fiber. PCL coated for 30s shows lower toxic effect as compared to other in the case of 

Wi38.  

In the case of HaCaT cell line Figure (25b), after 48h there is a reduction in the cell 

growth in all silver coated samples. Yet, Silver didn‘t inhibit the growth of cell after 72h 

in the case of PCL/Ag 30s, PCL/Ag 60s and PCL/Ag 120s. As the sputtering time 

increase toxicity has increased for all three samples, at p<0.05 for all three samples after 

48h and 72h in comparing PCL only as control. The same solvent effect has shown few 

reduction growth of cell line in the case of HaCaT for PCL only from the control. Finally, 

in summary it can be concluded that, the samples sputter coated either 30s or 60s is the 

best compared with 120s coating time. Therefore, next step was the optimization of 

antibacterial properties and choose the best antibacterial coating time for biomedical 

application such as wound healing.  
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Figure 25: : In vitro cell viability test of  a)Wi38 b) HaCaT cell line PCL, PCL/Ag 30s, 

PCL/Ag 60s and PCL/Ag 120s (n=5). ***p<0.05. 

 

1.19.4 Antibacterial study: 

The antibacterial properties of the PCL only, PCL/Ag 30s, PCL/Ag 60s and PCL/Ag 

120s were carried out with two kinds of microorganism: Bacillus pumilus (Gram 

positive). The release of Ag from the sample with respect to time of incubation for 2h and 

6h was studied. The results were summarized in Figure (26) and Figure (27). In Figure 

(26) it clearly demonstrate that, the presence of silver has reduced the growth of bacterial 

colonies. The Figure (26) was plotted graphically in Figure (27). The PCL fiber itself has 

never shown any antibacterial properties. However, in the case of PCL/Ag 30s there was 

not any antibacterial character during first 2h in gram positive, but has improved the 
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antibacterial activity after 6h of incubation by 96% from the control for gram positive.  

The PCL/Ag 60s has exhibited antibacterial inhibition from 1.85% to 95% for Bacillus 

pumilus for 2h and 6h incubation respectively. Moreover, PCL/Ag 120s displayed 

antibacterial inhibition from 48% to 92.45% for 2h and 6h incubation respectively. From 

these results we can conclude that, for gram positive bacteria as the time passes the 

release of Ag inhibit the growth. In addition, the sputtering time has not shown much 

change in the antibacterial properties. Only difference is in the release of silver to the 

media. Statistically, after 6h of incubation has shown much more variation in 

antibacterial inhibition compared with PCL as control (p<0.05). 

The antibacterial properties of silver are by various methods [134], [135]. For instance, 

the physical contact of silver particles to the cellular membrane of the bacteria could leafs 

to cellular damage, silver ion interact with cellular activity and DNA replication and 

Inhibit the growth of bacterial cells [136]. These results depict that the release of silver 

coated on the surface of electrospun fiber mats has exhibited antibacterial inhibition with 

time. Therefore, this type of coating could provide a better antibacterial inhibition for 

long term for biomedical application such as wound healing process. Hence, PCL sputter 

coated with Ag for 30s and 60s was more precise in antibacterial properties and cell 

cytotoxicity. Therefore, multilayered structure was sputter coated for 30s for better 

antibacterial and reduced cell cytotoxicity.  
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Figure 26: Antibacterial activities of the electrospun fibers coated with Ag against gram 

positive Bacillus pumilus (a) Control, b) PCL only, c) PCL/Ag 30s, d) PCL/Ag 60s and e) 

PCL/Ag 120s and also i) row Bacillus pumilus after 2h of incubation and ii) 6h of 

incubation.  
 

 

 

Figure 27: Antibacterial activities of electrospun PCL sputter coated with Ag with a) 

number of colonies (CFU/mL) Ag and b) antibacterial inhibition (%) was plotted for 

Bacillus pumilus. 
 

 



81 
 

1.20 Multilayer PCL-PVA-PCL loaded with GS and sputter coated with Ag:  

The multilayer PVA/PCL loaded with hydrophilic gentamicin sulphate was prepared by 

optimized condition. Various drug concentrations loaded around 1mg/mL, 2mg/mL and 

4mg/mL was prepared on multilayered electrospun fiber scaffolds. Later on, 1mg/mL of 

scaffold was sputter coated with Ag. . The fiber characterization was studied by SEM, 

FTIR, DSC and water contact angle measurement. Moreover, in-vitro release of 

gentamicin from the multilayered electrospun fiber scaffolds was considered. 

Furthermore, in-vitro cell toxicity of the electrospun fiber MATS was investigated by 

using Wi-38 and HaCaT human cell line. Antibacterial inhibition (%) was also 

investigated with gram negative and positive bacteria.  

1.20.1 Fiber characterization: 

1.20.1.1 Scanning Electron Microscope (SEM) : 

Multilayered PCL-PVA-PCL was prepared by using 11wt% of PCL solution and 10wt% 

PVA solution in 1:1 DMF:CF and deionized water respectively. The electrospinning 

condition was shown in Table (6). The SEM images showed that, the fibers are uniformly 

distributed with fiber diameter 407.0±112.1 Figure (28a) and 107.25±21.07 Figure (28b) 

for PCL (outer layer) and PVA (middle layer) respectively 
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Table 6: Electrospinning condition for multilayered PCL-PVA-PCL. 

Polymer layer Voltage Distance Flow rate 

(h/mL) 

Time (h) Needle size 

PCL 15 15cm 1 2 21G 

PVA (0,1,2,4 

mg/mL of GS) 

15 15cm 1 1 21G 

PCL 15 15cm 1 2 21G 

 

 

  

 
 

Figure 28: SEM images of a) PCL outer layer b) PVA loaded with drug (middle layer) c) PCL 

fiber (outer layer)  

 

1.20.1.2 Fourier-transform infrared spectroscopy (FTIR) : 

FTIR was characterized for powder of pure GS, pure PCL, pure PVA, 0 wt% GS ML, 1 

wt% GS ML, 2 wt% GS ML and 4 wt% GS ML respectively Figure (29). 
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Figure 29: FTIR spectroscopy of pure GS, pure PCL and pure PVA, 0 wt% GS ML, 1 

wt% GS ML, 2 wt% GS ML and 4 wt% GS ML. 
 
 
 
 
 

 

In Figure (29), FTIR spectrum of Gentamicin sulphate show a broad peak at 3000cm
-1

 

due to the presence of O-H and N-H bonds. The typical bands at 1644, 1633 and 1360 

cm
-1

 represent the presence of amide I, amide II and amide III bonds of gentamicin 

sulphate respectively. Peaks notified at 1060 cm
-1

 is due to HSO4. The peak at 612.3 cm
-1

 

represent the presence of SO2 band.  On the other hand, FTIR of PCL exhibit peaks at 

2959cm
-1

 (asymmetric CH2 bond), 2921 cm
-1

 (symmetric CH2 bond), 1732cm
-1

 (carbonyl 
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bond) , 1290cm
-1

 (C-O bond) and 1240cm
-1 

(C-O-C asymmetric bond). Also the PVA 

show typical bands such as at 3374 cm
-1

 (hydroxyl bond), 2959 cm
-1

 (asymmetric CH2 

bond), 2921 cm
-1

 (C-H bond), and 1472 and 1105 cm
-1

 (C-O bond). The same type of 

peaks was observed for PCL and PVA fibers are already reported [62], [137].  

The FTIR show a broad peak of 3374 cm
-1

 (hydroxyl bond) demonstrates the presence of 

GS as well as PVA. On the other hand, due to low concentration of gentamicin most of 

its peak was difficult to analyze by FTIR. In Figure (29), the multilayer structure 

demonstrates the peaks of PCL only because FTIR can only penetrate till 2um. Hence, in 

multilayer structure the outer layer is thicker than these limits. Therefore, it was not 

possible to show the peaks of PVA and GS.  

1.20.1.3 Thermogravimetric analysis (TGA): 

Figure (30) demonstrate the TGA results of pure PCL, pure PVA, PCL-PVA-PCL 

(multilayered electrospun mats loaded with 1wt% GS, 2wt% GS and 4wt% GS 

respectively.  The pure PCL nanofibers has shown one step degradation at 320
o
C and 

completely degraded at 460
o
C. The pure PVA decomposes in 3 steps. Firstly, from as 

shown  Figure (29) 50–170 °C is due to the moisture vaporization. Followed by, weight 

loss from 250 °C is the decomposition of PVA side chain. Finally, further decomposition 

of polyene residues take place which results in carbon and hydrocarbons.  

The incorporation of PVA-PCL composite electrospun fiber mats reduced its thermal 

stability as compare to PCL. However, it improved in the case of pure PVA. PVA-PCL 

loaded with 0wt% and 1wt% of GS has shown the similar thermal degradation. But 

improved its thermal stability via increasing the weight percentage of drug loaded in the 
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electrospun fiber mats. Therefore, 2wt% and 4wt% GS ML has shown increase in 

thermal stability. This would be due to the crystallinity of the drug molecules. This same 

type of results was noted in literature [138]  .  

 

 

Figure 30: Comparative TGA results of all the prepared fiber samples. Including pure 

PCL, pure PVA, PCL-PVA-PCL multilayered electrospun mats loaded with 1wt% GS, 

2wt% GS and 4wt% GS respectively. 
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1.20.2 Encapsulation efficiency of the GS in the fiber scaffolds: 

The encapsulation efficiency of the Gentamicin sulphate in the fiber scaffolds was 

calculated Figure (31) and results show that, multilayered scaffolds of 1wt%, 2wt% and 

4wt% of gentamicin sulphate have encapsulation efficiency of 54.8±22.9%, 54.4±13.46% 

and 64.39±13.99% respectively. This is due to the fact that, PVA loaded with GS is 

electrospun separately in multilayered therefore, there is chance for GS accumulation in 

the syringe and reduction in the encapsulation efficiency.  On the other hand, as the drug 

concentration increases in the multilayered structure its encapsulation efficiency is 

improved in the case of 4wt% of GS in multilayered structure.  

 

 

Figure 31: Encapsulation efficiency of the GS in the fiber scaffolds 
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1.20.3 In-vitro release of drug. 

The in vitro release of GS from the electrospun fiber mats was studied using ninhydrin-

gentamicin assay. The set of standards was prepared from gentamicin sulphate with 

ranging concentrations of 0 to 80ug/mL according to the Table (3). The calibration curve 

is shown in Figure (16) with regression 0.9997. The calibration curve was used to 

analyses the concentration of gentamicin sulphate release from the fiber scaffold into the 

PBS medium at each interval of time.  

After plotting the calibration curve the drug release of the scaffold was studied for 

multilayered structure for 7 days. The cumulative drug release per mg of scaffold was 

investigated with taking the percentage of drug present in solution at particular interval of 

time with total encapsulated drug from encapsulation efficiency. The results are shown in 

Figure (32). Multilayered has shown initial burst release over 5h was around 65%. After 

initial burst release its shown slower release of drug over 7 days where only 80% of 

loaded drug was released. In the case of multilayered structure, there are many factors 

contribute for the sustained release of drug, they are thickness of the fiber, amount of 

drug loaded, fiber diameters and porosity [27][139]. The initial burst release suggests that 

a good amount of GS was released during first 5h. Succeeding initial burst, the outer 

layer of multilayer scaffold will swells and stabilize and trap the drug from further 

release. These phenomena makes the continuous and sustained release of GS in ML for 

over 7 days where only 79% was released [27].  

The different weight percentage of GS was loaded into the fiber scaffolds and studied 

release kinetics. The results showed that, 1wt% GS ML has showed 65% of intial relase 

of drug from the scaffold. Also, in the 2wt% GS ML has only 53% of drug initial burst 
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release during first 5 hours. Formerly, showed a slow and sustained release with only 

60% was release over 7 days. But in the case of 4wt% GS ML it has shown that, only 

40% of drug released during first 5hr and showed sustained and slow release for 7 days. 

As the amount of GS increases the initial burst release of the drug will be reduced in 

accordance with swelling and stabilizing of the scaffold structure. However, over all 

amount of release of gentamicin from scaffold is shown in Figure (32b) where amount of 

drug loaded contribute for the results here where, multilayered 4wt%> multilayered 

2wt%> multilayered 1wt% in this order. From the release profile it could be concluded 

that it is solution-diffusion mechanism because from the graph compared to (Figure 32).  

 

 

 

Figure 32: cumulative release of GS from electrospun scaffolds a) cumulative % of drug 

loaded 1,2,4 wt% in multilayered structure b) Cumulative release of GS per mg of 

scaffolds of core shell, and multilayered structure.  

 

 

multilayered is suitable candidate for controlled release of drug. But, if the hydrophilic 

core was incorporated with the hydrophobic shell with porous structure would leads to 
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initial burst release in the drug delivery. But this issue could be managed by introducing 

multilayered electrospun fiber would leads reduce the initial burst release and contribute 

for sustained release of drug via solution-diffusion mechanism.   

1.20.4 In-vitro release of silver. 

In-vitro release Ag from ML 1wt%GS/Ag 30s was studied by incubating the fiber mats in 

de-ironized water for 70h. The result exhibits Figure (33) show a smooth release of Ag 

for over 70h from fiber scaffolds surface.  There was a smooth release in ppb per mass of 

the scaffold. So these data suggests that this type of scaffold should provide sustained 

release of Ag for prolonged time, which is suitable candidate for anti-bacterial property 

for bio-medical application such as wound dressing.  

 

 
Figure 33: cumulative release of Ag (ppb/mg of the fiber scaffold) for  PCL/Ag 30s, 

PCL/Ag 60s, PCL/Ag 120s and PCL/Ag 240s respectively. 
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1.20.5 Cytotoxicity of the fibers: 

The cytotoxicity of the electrospun nanofibers was studied by using Wi38 and HaCaat 

cell line for with and without gentamicin sulphate loaded multilayered (ML) electrospun 

fiber mats which is labeled as 0wt% GS ML, 1wt% GS ML and 4wt% GS ML for 

72hours Figure (34). In the case of Wi38,  0wt% GS ML has shown cell viability of 88% 

for core-shell structure and more than 101% for multilayered structure for 48h. moreover, 

97% and 107% for multilayered structure without loaded with GS respectively. However, 

incorporation of  GS to the drug to the scaffold had some toxic effect on the viability of 

cell growth. For instance, 1mg/mL multilayered and 4mg/mL multilayered have cell 

toxicity around 19%, 25% and 34% respectively.  

In the case of HaCat, same effect has been noted where increase in the drug has minor 

toxic effect on the viability of cells. After 72h there is a higher reduction in the growth of 

cells compared with the control. These could confirm the toxic effect created on cell line 

(Wi38 and HaCat) by gentamicin sulphate. And also, the core shell and multilayered fiber 

scaffold demonstrate similar cell toxicity because the components in the material is same 

only variation in the structure of the fiber scaffolds. These results conclude that, as the 

concentration of the drug increases, it shows a toxicity effect towards the keratinocyte 

(HaCat) and fibroblast (Wi38) cell line.   
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Figure 34: In vitro cell viability test of  a)Wi38 b) HaCat cell line  in pristine PVA/PCL core 

shell without drug and 1mg/mL of GS, multilayered fiber scaffold without and with GS 

(1mg/mL and 4mg/mL)  (n=5). ***p<0.05. 

 

1.20.6 Antibacterial Study: 

The antibacterial properties of the electrospun multilayered fibers loaded with gentamicin 

sulphate and silver was carried out two kinds of microorganism: Bacillus pumilus (Gram 

positive) and Escherichia coli (Gram negative). They are labeled as ML 0% GS, ML 1% 

GS, ML 4% GS, ML Ag and ML 1%GS/Ag. The results were summarized in Figure (35) 

and Figure (36) for gram positive Bacillus pumilus and Figure (37) and Figure (38) for 

gram negative E.coli. The presence of gentamicin sulphate in the middle layer of 

multilayered electrospun fibers make it controlled release and sustain the antibacterial 

activity. Gentamicin is a bacteriocidal antibiotics which intrude the protein synthesis by 

binding irreversibly with the 30s subunits of ribosomes. These process is alike with other 

aminoglycosides. Gentamicin are active against many bacterial infection caused mainly 

by gram negative such as Pseudomonas, Proteus, Escherichia coli, Klebsiella 

pneumoniae, Enterobacter aerogenes, Serratia, and the Gram-positive Staphylococcus.  

https://en.wikipedia.org/wiki/Pseudomonas
https://en.wikipedia.org/wiki/Proteus_(bacterium)
https://en.wikipedia.org/wiki/Escherichia_coli
https://en.wikipedia.org/wiki/Klebsiella_pneumoniae
https://en.wikipedia.org/wiki/Klebsiella_pneumoniae
https://en.wikipedia.org/wiki/Serratia
https://en.wikipedia.org/wiki/Staphylococcus
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The results from Figure (36b) show that multilayered fiber  PCL-PVA-PCL itself 

showing antibacterial activity around (11.1% and 35.7%) during 2h and 6h incubation 

respectively with the control. However, 1%GS loaded samples has showed antibacterial 

inhibition 42.59% during 2h of incubation and it got reduced to 26.78% after 6h of 

incubation with respect to control. This is due to the initial burst release of gentamicin 

sulphate but it later on it was insufficient to kill the bacteria inside the drug. But the 

presence of 4%GS has showed around 45.2% during first 2h of incubation but improved 

to 99.51% by 6h of incubation. Finally, in ML Ag and ML 1%GS Ag the antibacterial 

efficiency has improved from 44.44% to 99.51% in ML Ag and 48.14 to 93.76% in ML 

1%GS/Ag. Statically, for ML Ag and ML 1%GS/Ag after 6h of incubation has shown 

much more variation in antibacterial inhibition compared with control (p<0.05).  
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Figure 35: Antibacterial activities of the multilayered electrospun fiber mats loaded with 

drug and sputter coated with Ag against gram positive Bacillus pumilus with column (a) 

Control, b)ML 0% GS, c) ML 1% GS, d) ML Ag and e) ML 1%GS/Ag and also i) row 

Bacillus pumilus after 2h of incubation and ii) 6h of incubation.  

 

 

 

Figure 36: Antibacterial activities of multilayered electrospun fiber mats loaded with 

drug and sputter coated with Ag  against gram postive Bacillus pumilus a) number of 

colonies (CFU/mL) b) antibacterial inhibition (%)  
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On the other hand in the case Figure (37) &Figure (38) gram negative bacteria (E.coli), 

ML 0%GS (11.7%), ML 1%GS (33.85%) , ML 4%GS (54.44%), ML Ag (63.47%) and 

ML 1%GS/Ag (53.71%) has shown antibacterial inhibition (%) for first 2h of incubation. 

However, after 6h of incubation the ML 0%GS (34.97%), ML 1%GS (30.98%) , ML 

4%GS (90.33%), ML Ag (82.49%) and ML 1%GS/Ag (71.39%) antibacterial inhibition 

has been observed.   

These results recommend that, multilayered structure loaded with gentamicin sulphate 

sputter coated with Ag has improved the antibacterial properties of the material. 

Moreover, the samples antibacterial properties could be improved by addition of 

antibacterial drug into the samples. And it can give long antibacterial by reducing the 

initial burst release of the drug as well as consistent release of Ag from the surface of the 

electrospun fiber.  
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Figure 37: Antibacterial activities of the multilayered electrospun fiber mats loaded with 

drug and sputter coated with Ag against gram negative E.coli with column (a) Control, 

b)ML 0% GS, c) ML 1% GS, d) ML Ag and e) ML 1%GS/Ag and also i) row after 2h of 

incubation and ii) 6h of incubation. 
 

 

 

Figure 38: Antibacterial activities of multilayered electrospun fiber mats loaded with 

drug and sputter coated with Ag against gram negative E.coli a) number of colonies 

(CFU/mL) b) antibacterial inhibition (%) 
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CONCLUSION 

In this work preparation and characterization of multilayed fiber electrospun fiber mats of 

PVA/PCL polymers loaded with gentamicin sulphate was studied.  Uniform fibers were 

prepared by electrospinning process. In-vitro release of GS suggest that, multilayered 

fiber mats reduces initial burst release of drug from the scaffolds. Moreover, intial burst 

release in multilayer could be reduced by improving the amount of loaded GS in the 

scaffolds. The cytotoxicity study illustrate conclude that, there is a toxic effect for the 

increase in the drug concentration for Wi38 and Hacaat cell line. However, the 

component PCL and PVA is biocompatabile because it has improved the growth of cells. 

On the other hand PCL was sputter coated with Ag to investigate the in-vitro release of 

Ag and cytotoxicity of the scaffolds. It is summarized that, Ag coated scaffolds have 

toxicity effect towards the cell line. However, it possess a gradual release of Ag for the 

antibacterial activity.  Antibacterial inhibition (%) has improved with the addition of drug 

as well as silver particles to the surface of the outer layer of the electrospun fiber. 

Therefore, it is concluded that, the prepared fiber scaffold could be promising material 

for sustained protection from antibacterial for wound dressing applications.  
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