2,624 research outputs found

    (2+1) gravity for higher genus in the polygon model

    Full text link
    We construct explicitly a (12g-12)-dimensional space P of unconstrained and independent initial data for 't Hooft's polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g >= 2. Our method relies on interpreting the boost parameters of the gluing data between flat Minkowskian patches as the lengths of certain geodesic curves of an associated smooth Riemann surface of the same genus. The appearance of an initial big-bang or a final big-crunch singularity (but never both) is verified for all configurations. Points in P correspond to spacetimes which admit a one-polygon tessellation, and we conjecture that P is already the complete physical phase space of the polygon model. Our results open the way for numerical investigations of pure (2+1) gravity.Comment: 35 pages, 22 figure

    Mining large-scale human mobility data for long-term crime prediction

    Full text link
    Traditional crime prediction models based on census data are limited, as they fail to capture the complexity and dynamics of human activity. With the rise of ubiquitous computing, there is the opportunity to improve such models with data that make for better proxies of human presence in cities. In this paper, we leverage large human mobility data to craft an extensive set of features for crime prediction, as informed by theories in criminology and urban studies. We employ averaging and boosting ensemble techniques from machine learning, to investigate their power in predicting yearly counts for different types of crimes occurring in New York City at census tract level. Our study shows that spatial and spatio-temporal features derived from Foursquare venues and checkins, subway rides, and taxi rides, improve the baseline models relying on census and POI data. The proposed models achieve absolute R^2 metrics of up to 65% (on a geographical out-of-sample test set) and up to 89% (on a temporal out-of-sample test set). This proves that, next to the residential population of an area, the ambient population there is strongly predictive of the area's crime levels. We deep-dive into the main crime categories, and find that the predictive gain of the human dynamics features varies across crime types: such features bring the biggest boost in case of grand larcenies, whereas assaults are already well predicted by the census features. Furthermore, we identify and discuss top predictive features for the main crime categories. These results offer valuable insights for those responsible for urban policy or law enforcement

    Microscopic description of 2d topological phases, duality and 3d state sums

    Full text link
    Doubled topological phases introduced by Kitaev, Levin and Wen supported on two dimensional lattices are Hamiltonian versions of three dimensional topological quantum field theories described by the Turaev-Viro state sum models. We introduce the latter with an emphasis on obtaining them from theories in the continuum. Equivalence of the previous models in the ground state are shown in case of the honeycomb lattice and the gauge group being a finite group by means of the well-known duality transformation between the group algebra and the spin network basis of lattice gauge theory. An analysis of the ribbon operators describing excitations in both types of models and the three dimensional geometrical interpretation are given.Comment: 19 pages, typos corrected, style improved, a final paragraph adde

    Braiding and entanglement in spin networks: a combinatorial approach to topological phases

    Full text link
    The spin network quantum simulator relies on the su(2) representation ring (or its q-deformed counterpart at q= root of unity) and its basic features naturally include (multipartite) entanglement and braiding. In particular, q-deformed spin network automata are able to perform efficiently approximate calculations of topological invarians of knots and 3-manifolds. The same algebraic background is shared by 2D lattice models supporting topological phases of matter that have recently gained much interest in condensed matter physics. These developments are motivated by the possibility to store quantum information fault-tolerantly in a physical system supporting fractional statistics since a part of the associated Hilbert space is insensitive to local perturbations. Most of currently addressed approaches are framed within a 'double' quantum Chern-Simons field theory, whose quantum amplitudes represent evolution histories of local lattice degrees of freedom. We propose here a novel combinatorial approach based on `state sum' models of the Turaev-Viro type associated with SU(2)_q-colored triangulations of the ambient 3-manifolds. We argue that boundary 2D lattice models (as well as observables in the form of colored graphs satisfying braiding relations) could be consistently addressed. This is supported by the proof that the Hamiltonian of the Levin-Wen condensed string net model in a surface Sigma coincides with the corresponding Turaev-Viro amplitude on Sigma x [0,1] presented in the last section.Comment: Contributed to Quantum 2008: IV workshop ad memoriam of Carlo Novero 19-23 May 2008 - Turin, Ital
    • …
    corecore