7 research outputs found

    Preclinical toxicology and safety pharmacology of the first-in-class GADD45β/MKK7 inhibitor and clinical candidate, DTP3

    Get PDF
    Aberrant NF-κB activity drives oncogenesis and cell survival in multiple myeloma (MM) and many other cancers. However, despite an aggressive effort by the pharmaceutical industry over the past 30 years, no specific IκBα kinase (IKK)β/NF-κB inhibitor has been clinically approved, due to the multiple dose-limiting toxicities of conventional NF-κB-targeting drugs. To overcome this barrier to therapeutic NF-κB inhibition, we developed the first-in-class growth arrest and DNA-damage-inducible (GADD45)β/mitogen-activated protein kinase kinase (MKK)7 inhibitor, DTP3, which targets an essential, cancer-selective cell-survival module downstream of the NF-κB pathway. As a result, DTP3 specifically kills MM cells, ex vivo and in vivo, ablating MM xenografts in mice, with no apparent adverse effects, nor evident toxicity to healthy cells. Here, we report the results from the preclinical regulatory pharmacodynamic (PD), safety pharmacology, pharmacokinetic (PK), and toxicology programmes of DTP3, leading to the approval for clinical trials in oncology. These results demonstrate that DTP3 combines on-target-selective pharmacology, therapeutic anticancer efficacy, favourable drug-like properties, long plasma half-life and good bioavailability, with no target-organs of toxicity and no adverse effects preclusive of its clinical development in oncology, upon daily repeat-dose administration in both rodent and non-rodent species. Our study underscores the clinical potential of DTP3 as a conceptually novel candidate therapeutic selectively blocking NF-κB survival signalling in MM and potentially other NF-κB-driven cancers

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit

    Potent Cyclic Peptide Inhibitors of FXIIa Discovered by mRNA Display with Genetic Code Reprogramming

    No full text
    The contact system comprises a series of serine proteases that mediate procoagulant and proinflammatory activities via the intrinsic pathway of coagulation and the kallikrein-kinin system, respectively. Inhibition of Factor XIIa (FXIIa), an initiator of the contact system, has been demonstrated to lead to thrombo-protection and anti-inflammatory effects in animal models and serves as a potentially safer target for the development of antithrombotics. Herein, we describe the use of the Randomised Nonstandard Peptide Integrated Discovery (RaPID) mRNA display technology to identify a series of potent and selective cyclic peptide inhibitors of FXIIa. Cyclic peptides were evaluated in vitro, and three lead compounds exhibited significant prolongation of aPTT, a reduction in thrombin generation, and an inhibition of bradykinin formation. We also describe our efforts to identify the critical residues for binding FXIIa through alanine scanning, analogue generation, and via in silico methods to predict the binding mode of our lead cyclic peptide inhibitors.</p

    Foreign and Security Policy Diversification in Eurasia: Issue Splitting, Co-alignment, and Relational Power

    No full text

    Bibliography of the genus Apodemus (Rodentia, Muridae)

    No full text
    corecore