90 research outputs found

    Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.</p> <p>Methods</p> <p>Expired NO (E<sub>NO</sub>) and CO (E<sub>CO</sub>) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10<sup>-/-</sup>, A/J, MKK3<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/- </sup>and NOS-3<sup>-/-</sup>) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. E<sub>NO </sub>and E<sub>CO </sub>were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.</p> <p>Results</p> <p>E<sub>NO </sub>was significantly elevated in naïve IL-10<sup>-/- </sup>(9–14 ppb) and NOS-2<sup>-/- </sup>(16 ppb) mice as compared to others (average: 5–8 ppb), whereas E<sub>CO </sub>was significantly higher in naïve A/J, NOS-3<sup>-/- </sup>(3–4 ppm), and MKK3<sup>-/- </sup>(4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/-</sup>, and NOS-3<sup>-/- </sup>mice were decreased, whereas they were greater for A/J and MKK3<sup>-/- </sup>mice. SMTC significantly decreased E<sub>NO </sub>by ~30%, but did not change AR in NOS-2<sup>-/- </sup>mice. SnPP reduced E<sub>CO </sub>in C57Bl6 and IL-10<sup>-/- </sup>mice, and increased AR in NOS-2<sup>-/- </sup>mice. E<sub>NO </sub>decreased as a function of age in IL-10<sup>-/- </sup>mice, remaining unchanged in C57Bl6 mice.</p> <p>Conclusion</p> <p>These results are consistent with the ideas that: 1) E<sub>NO </sub>is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of E<sub>NO </sub>and E<sub>CO </sub>can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.</p

    Results of noninvasive ventilation in very old patients

    Get PDF
    International audienceABSTRACT: BACKGROUND: Noninvasive ventilation (NIV) is frequently used for the management of acute respiratory failure (ARF) in very old patients (>80 years), often in the context of a do-not-intubate order (DNI). We aimed to determine its efficacy and long-term outcome. METHODS: Prospective cohort of all patients admitted to the medical ICU of a tertiary hospital during a 2-year period and managed using NIV. Characteristics of patients, context of NIV, and treatment intensity were compared for very old and younger patients. Six-month survival and functional status were assessed in very old patients. RESULTS: During the study period, 1,019 patients needed ventilatory support and 376 (37%) received NIV. Among them, 163 (16%) very old patients received ventilatory support with 60% of them managed using NIV compared with 32% of younger patients (p < 0.0001). Very old patients received NIV more frequently with DNI than in younger patients (40% vs. 8%). Such cases were associated with high mortality for both very old and younger patients. Hospital mortality was higher in very old than in younger patients but did not differ when NIV was used for cardiogenic pulmonary edema or acute-on-chronic respiratory failure (20% vs. 15%) and in postextubation (15% vs. 17%) out of a context of DNI. Six-month mortality was 51% in very old patients, 67% for DNI patients, and 77% in case of NIV failure and endotracheal intubation. Of the 30 hospital survivors, 22 lived at home and 13 remained independent for activities of daily living. CONCLUSIONS: Very old patients managed using NIV have an overall satisfactory 6-month survival and functional status, except for endotracheal intubation after NIV failure

    Serum Lipopolysaccharide Binding Protein Levels Predict Severity of Lung Injury and Mortality in Patients with Severe Sepsis

    Get PDF
    Background: There is a need for biomarkers insuring identification of septic patients at high-risk for death. We performed a prospective, multicenter, observational study to investigate the time-course of lipopolysaccharide binding protein (LBP) serum levels in patients with severe sepsis and examined whether serial serum levels of LBP could be used as a marker of outcome. Methodology/Principal Findings: LBP serum levels at study entry, at 48 hours and at day-7 were measured in 180 patients with severe sepsis. Data regarding the nature of infections, disease severity, development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), and intensive care unit (ICU) outcome were recorded. LBP serum levels were similar in survivors and non-survivors at study entry (117.4±75.7 µg/mL vs. 129.8±71.3 µg/mL, P = 0.249) but there were significant differences at 48 hours (77.2±57.0 vs. 121.2±73.4 µg/mL, P<0.0001) and at day-7 (64.7±45.8 vs. 89.7±61.1 µg/ml, p = 0.017). At 48 hours, LBP levels were significantly higher in ARDS patients than in ALI patients (112.5±71.8 µg/ml vs. 76.6±55.9 µg/ml, P = 0.0001). An increase of LBP levels at 48 hours was associated with higher mortality (odds ratio 3.97; 95%CI: 1.84–8.56; P<0.001). Conclusions/Significance: Serial LBP serum measurements may offer a clinically useful biomarker for identification of patients with severe sepsis having the worst outcomes and the highest probability of developing sepsis-induced ARDS

    Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    Get PDF
    INTRODUCTION: Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T) = 8 mL/kg or high tidal volume V(T) = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cm H(2)O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation

    Comfort and patient-centred care without excessive sedation:the eCASH concept

    Get PDF
    We propose an integrated and adaptable approach to improve patient care and clinical outcomes through analgesia and light sedation, initiated early during an episode of critical illness and as a priority of care. This strategy, which may be regarded as an evolution of the Pain, Agitation and Delirium guidelines, is conveyed in the mnemonic eCASH—early Comfort using Analgesia, minimal Sedatives and maximal Humane care. eCASH aims to establish optimal patient comfort with minimal sedation as the default presumption for intensive care unit (ICU) patients in the absence of recognised medical requirements for deeper sedation. Effective pain relief is the first priority for implementation of eCASH: we advocate flexible multimodal analgesia designed to minimise use of opioids. Sedation is secondary to pain relief and where possible should be based on agents that can be titrated to a prespecified target level that is subject to regular review and adjustment; routine use of benzodiazepines should be minimised. From the outset, the objective of sedation strategy is to eliminate the use of sedatives at the earliest medically justifiable opportunity. Effective analgesia and minimal sedation contribute to the larger aims of eCASH by facilitating promotion of sleep, early mobilization strategies and improved communication of patients with staff and relatives, all of which may be expected to assist rehabilitation and avoid isolation, confusion and possible long-term psychological complications of an ICU stay. eCASH represents a new paradigm for patient-centred care in the ICU. Some organizational challenges to the implementation of eCASH are identified.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    • …
    corecore