225 research outputs found

    Laser pump X ray probe experiments with electrons ejected from a Cu 111 target space charge acceleration

    Get PDF
    A comprehensive investigation of the emission characteristics for electrons induced by X rays of a few hundred eV at grazing incidence angles on an atomically clean Cu 111 sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation high peak current of photoemission on the properties of Auger and photoelectrons liberated by a probe X ray beam is investigated in time resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical result

    Electronic tuneability of a structurally rigid surface intermetallic and Kondo lattice: CePt5_5 / Pt(111)

    Get PDF
    We present an extensive study of structure, composition, electronic and magnetic properties of Ce--Pt surface intermetallic phases on Pt(111) as a function of their thickness. The sequence of structural phases appearing in low energy electron diffraction (LEED) may invariably be attributed to a single underlying intermetallic atomic lattice. Findings from both microscopic and spectroscopic methods, respectively, prove compatible with CePt5_5 formation when their characteristic probing depth is adequately taken into account. The intermetallic film thickness serves as an effective tuning parameter which brings about characteristic variations of the Cerium valence and related properties. Soft x-ray absorption (XAS) and magnetic circular dichroism (XMCD) prove well suited to trace the changing Ce valence and to assess relevant aspects of Kondo physics in the CePt5_5 surface intermetallic. We find characteristic Kondo scales of the order of 102^2 K and evidence for considerable magnetic Kondo screening of the local Ce 4f4f moments. CePt5_5/Pt(111) and related systems therefore appear to be promising candidates for further studies of low-dimensional Kondo lattices at surfaces.Comment: 14 pages, 11 figure

    Distribution Of Foraging Shearwaters Relative To Inner Front Of SE Bering Sea

    Get PDF
    We examined the hypothesis that short-tailed shearwaters Puffinus tenuirostris aggregate to forage at the inner front of the SE Bering Sea because of enhanced production there. We tested this hypothesis by comparing primary production, the distribution of euphausiids and the distribution of shearwaters relative to the front during late spring and late summer/early fall of 1997, 1998 and 1999. We found enhanced primary production at the front and offshore of the front during summer but not during spring. Primary production varied between seasons and years. Major differences were related to anomalous conditions in 1997 and 1998. The density of euphausiids was higher at the front and offshore of the front during summer, but there were no differences among regions during spring. Foraging shearwaters aggregated in high densities at the front during summer, but foraged close to shore during spring. At the front, shearwaters foraged on euphausiids Thysanoessa raschii and T. inermis as expected, and on copepods that accumulated in the area. The proportion of zooplankton consumed at the front decreased from summer 1997 to summer 1999, while consumption of sandlance Ammodytes hexapterus at this feature increased. Our results show that, during summer, the inner front supports aggregations of euphausiids and their seabird predators. The means by which the frontal system supports enhanced production and the subsequent trophic transfers is dependent on the availability of nutrients at depth in the frontal region and the aggregation of small zooplankton organisms in this feature

    On-site correlation in valence and core states of ferromagnetic nickel

    Full text link
    We present a method which allows to include narrow-band correlation effects into the description of both valence and core states and we apply it to the prototypical case of nickel. The results of an ab-initio band calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral functions according to a three-body scattering solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle spectra show a remarkable agreement with photoemission data in terms of band width, exchange splitting, satellite energy position of valence states, spin polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR

    Angular Momentum Flow During Ultrafast Demagnetization of a Ferrimagnet

    Get PDF
    One of the key processes setting the speed of the ultrafast magnetization phenomena is the angular momentum transfer from and into the spin system. However, the way the angular momentum flows during ultrafast demagnetization and magnetization switching phenomena remains elusive so far. We report on time resolved soft x ray magnetic circular dichroism measurements of the ferrimagnetic GdFeCo alloy allowing us to record the dynamics of elemental spin and orbital moments at the Fe and Gd sites during femtosecond laser induced demagnetization. We observe a complete transfer of spin and orbital angular momentum to the lattice during the first hundreds of femtoseconds of the demagnetization proces

    Ultrafast and Distinct Spin Dynamics in Magnetic Alloys

    Get PDF
    Controlling magnetic order on ultrashort timescales is crucial for engineering the next-generation magnetic devices that combine ultrafast data processing with ultrahigh-density data storage. An appealing scenario in this context is the use of femtosecond (fs) laser pulses as an ultrafast, external stimulus to fully set the orientation and the magnetization magnitude of a spin ensemble. Achieving such control on ultrashort timescales, e.g., comparable to the excitation event itself, remains however a challenge due to the lack of understanding the dynamical behavior of the key parameters governing magnetism: The elemental magnetic moments and the exchange interaction. Here, we investigate the fs laser-induced spin dynamics in a variety of multi-component alloys and reveal a dissimilar dynamics of the constituent magnetic moments on ultrashort timescales. Moreover, we show that such distinct dynamics is a general phenomenon that can be exploited to engineer new magnetic media with tailor-made, optimized dynamic properties. Using phenomenological considerations, atomistic modeling and time-resolved X-ray magnetic circular dichroism (XMCD), we demonstrate demagnetization of the constituent sub-lattices on significantly different timescales that depend on their magnetic moments and the sign of the exchange interaction. These results can be used as a “recipe” for manipulation and control of magnetization dynamics in a large class of magnetic materials
    corecore