6 research outputs found

    Cerebral microdialysis and glucopenia in traumatic brain injury: A review

    Get PDF
    Traditionally, intracranial pressure (ICP) and partial brain tissue oxygenation (PbtO2) have been the primary invasive intracranial measurements used to guide management in patients with severe traumatic brain injury (TBI). After injury however, the brain develops an increased metabolic demand which may require an increment in the oxidative metabolism of glucose. Simultaneously, metabolic, and electrical dysfunction can lead to an inability to meet these demands, even in the absence of ischemia or increased intracranial pressure. Cerebral microdialysis provides the ability to accurately measure local concentrations of various solutes including lactate, pyruvate, glycerol and glucose. Experimental and clinical data demonstrate that such measurements of cellular metabolism can yield critical missing information about a patient's physiologic state and help limit secondary damage. Glucose management in traumatic brain injury is still an unresolved question. As cerebral glucose metabolism may be uncoupled from systemic glucose levels due to the metabolic dysfunction, measurement of cerebral extracellular glucose concentrations could provide more predictive information and prove to be a better biomarker to avoid secondary injury of at-risk brain tissue. Based on data obtained from cerebral microdialysis, specific interventions such as ICP-directed therapy, blood glucose increment, seizure control, and/or brain oxygen optimization can be instituted to minimize or prevent secondary insults. Thus, microdialysis measurements of parenchymal metabolic function provides clinically valuable information that cannot be obtained by other monitoring adjuncts in the standard ICU setting

    Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders

    Full text link
    Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eyetracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n =664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis

    Physical effort exertion for peer feedback reveals evolving social motivations from adolescence to young adulthood

    No full text
    Peer relationships and social belonging are particularly important during adolescence. Using a willingness-to-work paradigm to quantify incentive motivation, we examined whether evaluative information holds unique value for adolescents. Participants (N=102; 12–23y) rated peers, predicted how peers rated them, and exerted physical effort to view each peer’s rating. We measured grip force, speed, and opt-out behavior to examine the motivational value of peer feedback relative to a control condition of money, and how peer desirability and participants’ expectations modulated motivated effort across age. Overall, when compared to adolescents, adults were relatively less motivated for feedback compared against money. While adults exerted less force and speed for feedback when expecting rejection, adolescents exerted greater force and speed when they expected to be more strongly liked or disliked. Findings suggest the transition into adulthood is accompanied by a self-protective focus, whereas adolescents are motivated to consume highly informative feedback, even if negative

    How adolescents and adults translate motivational value to action: Age-related shifts in strategic physical effort exertion for monetary rewards

    No full text
    Adults titrate the degree of physical effort they are willing to expend according to the magnitude of reward they expect to obtain, a process guided by incentive motivation. However, it remains unclear whether adolescents, who are undergoing normative developmental changes in cognitive and reward processing, translate incentive motivation into action in a way that is similarly tuned to reward value and economical in effort utilization. The present study adapted a classic physical effort paradigm to quantify age-related changes in motivation-based and strategic markers of effort exertion for monetary rewards from adolescence to early adulthood. One hundred and three participants aged 12-23 years completed a task that involved exerting low or high amounts of physical effort, in the form of a hand grip, to earn low or high amounts of money. Adolescents and young adults exhibited highly similar incentive-modulated effort for reward according to measures of peak grip force and speed, suggesting that motivation for monetary reward is consistent across age. However, young adults expended energy more economically and strategically: whereas adolescents were prone to exert excess physical effort beyond what was required to earn reward, young adults were more likely to strategically prepare before each grip phase and conserve energy by opting out of low reward trials. This work extends theoretical models of development of incentive-driven behavior by demonstrating that layered on similarity in motivational value for monetary reward, there are important differences in the way behavior is flexibly adjusted in the presence of reward from adolescence to young adulthood

    An open resource for transdiagnostic research in pediatric mental health and learning disorders

    No full text
    AbstractTechnological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).</jats:p
    corecore