6 research outputs found

    The Bacterial and Viral Complexity of Postinfectious Hydrocephalus in Uganda

    Get PDF
    Postinfectious hydrocephalus (PIH), often following neonatal sepsis, is the most common cause of pediatric hydrocephalus world-wide, yet the microbial pathogens remain uncharacterized. Characterization of the microbial agents causing PIH would lead to an emphasis shift from surgical palliation of cerebrospinal fluid (CSF) accumulation to prevention. We examined blood and CSF from 100 consecutive cases of PIH and control cases of non-postinfectious hydrocephalus (NPIH) in infants in Uganda. Genomic testing was undertaken for bacterial, fungal, and parasitic DNA, DNA and RNA sequencing for viral identification, and extensive bacterial culture recovery. We uncovered a major contribution to PIH from Paenibacillus , upon a background of frequent cytomegalovirus (CMV) infection. CMV was only found in CSF in PIH cases. A facultatively anaerobic isolate was recovered. Assembly of the genome revealed a strain of P. thiaminolyticus . In mice, this isolate designated strain Mbale , was lethal in contrast with the benign reference strain. These findings point to the value of an unbiased pan-microbial approach to characterize PIH in settings where the organisms remain unknown, and enables a pathway towards more optimal treatment and prevention of the proximate neonatal infections. One Sentence Summary We have discovered a novel strain of bacteria upon a frequent viral background underlying postinfectious hydrocephalus in Uganda

    Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants

    Get PDF
    Postinfectious hydrocephalus (PIH), which often follows neonatal sepsis, is the most common cause of pediatric hydrocephalus worldwide, yet the microbial pathogens underlying this disease remain to be elucidated. Characterization of the microbial agents causing PIH would enable a shift from surgical palliation of cerebrospinal fluid (CSF) accumulation to prevention of the disease. Here, we examined blood and CSF samples collected from 100 consecutive infant cases of PIH and control cases comprising infants with non-postinfectious hydrocephalus in Uganda. Genomic sequencing of samples was undertaken to test for bacterial, fungal, and parasitic DNA; DNA and RNA sequencing was used to identify viruses; and bacterial culture recovery was used to identify potential causative organisms. We found that infection with the bacterium Paenibacillus, together with frequent cytomegalovirus (CMV) coinfection, was associated with PIH in our infant cohort. Assembly of the genome of a facultative anaerobic bacterial isolate recovered from cultures of CSF samples from PIH cases identified a strain of Paenibacillus thiaminolyticus. This strain, designated Mbale, was lethal when injected into mice in contrast to the benign reference Paenibacillus strain. These findings show that an unbiased pan-microbial approach enabled characterization of Paenibacillus in CSF samples from PIH cases, and point toward a pathway of more optimal treatment and prevention for PIH and other proximate neonatal infections

    Vaginal microbiome topic modeling of laboring Ugandan women with and without fever

    No full text
    The composition of the maternal vaginal microbiome influences the duration of pregnancy, onset of labor, and even neonatal outcomes. Maternal microbiome research in sub-Saharan Africa has focused on non-pregnant and postpartum composition of the vaginal microbiome. Here we aimed to illustrate the relationship between the vaginal microbiome of 99 laboring Ugandan women and intrapartum fever using routine microbiology and 16S ribosomal RNA gene sequencing from two hypervariable regions (V1–V2 and V3–V4). To describe the vaginal microbes associated with vaginal microbial communities, we pursued two approaches: hierarchical clustering methods and a novel Grades of Membership (GoM) modeling approach for vaginal microbiome characterization. Leveraging GoM models, we created a basis composed of a preassigned number of microbial topics whose linear combination optimally represents each patient yielding more comprehensive associations and characterization between maternal clinical features and the microbial communities. Using a random forest model, we showed that by including microbial topic models we improved upon clinical variables to predict maternal fever. Overall, we found a higher prevalence of Granulicatella, Streptococcus, Fusobacterium, Anaerococcus, Sneathia, Clostridium, Gemella, Mobiluncus, and Veillonella genera in febrile mothers, and higher prevalence of Lactobacillus genera (in particular L. crispatus and L. jensenii), Acinobacter, Aerococcus, and Prevotella species in afebrile mothers. By including clinical variables with microbial topics in this model, we observed young maternal age, fever reported earlier in the pregnancy, longer labor duration, and microbial communities with reduced Lactobacillus diversity were associated with intrapartum fever. These results better defined relationships between the presence or absence of intrapartum fever, demographics, peripartum course, and vaginal microbial topics, and expanded our understanding of the impact of the microbiome on maternal and potentially neonatal outcome risk

    Improving Infant Hydrocephalus Outcomes in Uganda: A Longitudinal Prospective Study Protocol for Predicting Developmental Outcomes and Identifying Patients at Risk for Early Treatment Failure after ETV/CPC

    No full text
    Infant hydrocephalus poses a severe global health burden; 80% of cases occur in the developing world where patients have limited access to neurosurgical care. Surgical treatment combining endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC), first practiced at CURE Children’s Hospital of Uganda (CCHU), is as effective as standard ventriculoperitoneal shunt (VPS) placement while requiring fewer resources and less post-operative care. Although treatment focuses on controlling ventricle size, this has little association with treatment failure or long-term outcome. This study aims to monitor the progression of hydrocephalus and treatment response, and investigate the association between cerebral physiology, brain growth, and neurodevelopmental outcomes following surgery. We will enroll 300 infants admitted to CCHU for treatment. All patients will receive pre/post-operative measurements of cerebral tissue oxygenation (SO2), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) using frequency-domain near-infrared combined with diffuse correlation spectroscopies (FDNIRS-DCS). Infants will also receive brain imaging, to monitor tissue/ventricle volume, and neurodevelopmental assessments until two years of age. This study will provide a foundation for implementing cerebral physiological monitoring to establish evidence-based guidelines for hydrocephalus treatment. This paper outlines the protocol, clinical workflow, data management, and analysis plan of this international, multi-center trial

    1328. Paenibacillosis: An Emerging Cause of Neonatal Sepsis and Postinfectious Hydrocephalus

    No full text
    Background The etiology of neonatal sepsis is often not identified. Molecular methods can identify pathogens that culture-based methods miss. Most cases of neonatal sepsis globally are treated empirically per WHO guidelines with intravenous ampicillin and gentamicin, which may not be the best regimen for all pathogens. Methods We prospectively enrolled 800 neonates presenting with signs of sepsis to two Ugandan hospitals. Blood and cerebrospinal fluid were subjected to 16S rRNA sequencing, which identified Paenibacillus thiaminolyticus in 33/800 (4%) neonates. We confirmed the presence of P. thiaminolyticus by quantitative polymerase chain reaction (PCR). We describe neonatal and birth characteristics, presenting signs, and 12-month developmental outcomes for neonates with paenibacillosis. We performed antibiotic susceptibility testing and genomic analyses on three clinical isolates successfully grown in the laboratory. Results Neonates presented at a median age of 3 (1, 7) days. Fever (86%), irritability (78%) and seizures (52%) were common presenting signs (Figure). Most neonates were born vaginally (73%) at a medical facility (79%). Twelve (36%) had an adverse outcome: 5 (15%) neonates died; 4 (14%) survivors developed postinfectious hydrocephalus and three (9%) additional survivors had neurodevelopmental impairment. All three isolates were resistant to vancomycin, two were resistant to penicillin and ampicillin and one was unlikely to be sensitive to ceftriaxone; all were susceptible to gentamicin and meropenem. The genomes of all three strains contained multiple beta-lactamase genes and a cluster of genes that encodes a type IV pilus. Clinical signs at presentation for neonates with good and poor outcomes followng paenibacillosis. Conclusion Molecular methods such as 16S rRNA sequencing and PCR can be used to improve the identification of pathogens causing neonatal sepsis. Paenibacillosis is an important emerging cause of neonatal sepsis in Uganda and is likely an underrecognized cause of postinfectious hydrocephalus in the region and possibly elsewhere. Antibiotics commonly used for neonatal sepsis may be inadequate for the treatment of paenibacillosis. Additional studies to understand the pathophysiology and optimal treatment of this novel infection are urgently needed to prevent neonatal mortality and morbidity including postinfectious hydrocephalus

    Neonatal Paenibacilliosis: Paenibacillus infection as a Novel Cause of Sepsis in Term Neonates with High Risk of Sequelae in Uganda

    No full text
    Paenibacillus thiaminolyticus may be an underdiagnosed cause of neonatal sepsis. We prospectively enrolled a cohort of 800 full-term neonates presenting with a clinical diagnosis of sepsis at two Ugandan hospitals. Quantitative polymerase chain reaction specific to P. thiaminolyticus and to the Paenibacillus genus were performed on the blood and cerebrospinal fluid (CSF) of 631 neonates who had both specimen types available. Neonates with Paenibacillus genus or species detected in either specimen type were considered to potentially have paenibacilliosis, (37/631, 6%). We described antenatal, perinatal, and neonatal characteristics, presenting signs, and 12-month developmental outcomes for neonates with paenibacillosis vs. clinical sepsis. Median age at presentation was 3 days (interquartile range 1, 7). Fever (92%), irritability (84%) and clinical signs of seizures (51%) were common. Eleven (30%) had an adverse outcome: 5 (14%) neonates died during the first year of life; 5 of 32 (16%) survivors developed postinfectious hydrocephalus (PIH) and one (3%) additional survivor had neurodevelopmental impairment without hydrocephalus. Paenibacillus species was identified in 6% of neonates with signs of sepsis who presented to two Ugandan referral hospitals; 70% were P. thiaminolyticus. Improved diagnostics for neonatal sepsis are urgently needed. Optimal antibiotic treatment for this infection is unknown but ampicillin and vancomycin will be ineffective in many cases. These results highlight the need to consider local pathogen prevalence and the possibility of unusual pathogens when determining antibiotic choice for neonatal sepsis. [Abstract copyright: © The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: [email protected].
    corecore