31 research outputs found

    Employee Stock Ownership and Financial Performance in European Countries: The Moderating Effects of Uncertainty Avoidance and Social Trust

    Get PDF
    This study investigates how the effect of employee stock ownership on financial performance may hinge on the diverse cultural and societal contexts of European countries. Based on agency and national culture theories, we hypothesize that the positive relationship between employee stock ownership and return on assets (ROA) is stronger in those nations with lower uncertainty avoidance and higher social trust. Using a multisource, time‐lagged, large‐scale dataset of 1,741 firms from 21 countries in Europe, our multilevel, random coefficient modeling analysis found evidence for these hypotheses, suggesting that uncertainty avoidance and social trust serve as important contextual cues in predicting the linkage between employee stock ownership and financial performance. Our supplemental analysis with distinction between the managerial and nonmanagerial employee stock ownership further indicates managerial employee stock ownership has a direct positive effect on ROA. Although nonmanagerial employee stock ownership had a nonsignificant association with ROA, the relationship was positive and significant when uncertainty avoidance was low and social trust was high. This research contributes to the existing literature by illuminating some of the contextual influences altering the effectiveness of employee stock ownership. Our findings also offer practical suggestions for effectively using employee stock ownership

    The Feasibility of High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) in Patients with Suspected Scaphoid Fractures

    Get PDF
    Introduction: Diagnosing scaphoid fractures remains challenging. High-resolution peripheral quantitative computed tomography (HR-pQCT) might be a potential imaging technique, but no data are available on its feasibility to scan the scaphoid bone in vivo. Methodology: Patients (≥18 years) with a clinically suspected scaphoid fracture received an HR-pQCT scan of the scaphoid bone (three 10.2-mm stacks, 61-μm voxel size) with their wrist immobilized with a cast. Scan quality assessment and bone contouring were performed using methods originally developed for HR-pQCT scans of radius and tibia. The contouring algorithm was applied on coarse hand-drawn pre-contours of the scaphoid bone, and the resulting contours (AUTO) were manually corrected (sAUTO) when visually deviating from bone margins. Standard morphologic analyses were performed on the AUTO- and sAUTO-contoured bones. Results: Ninety-one patients were scanned. Two out of the first five scans were repeated due to poor scan quality (40%) based on standard quality assessment during scanning, which decreased to three out of the next 86 scans (3.5%) when using an additional thumb cast. Nevertheless, after excluding one scan with an incompletely scanned scaphoid bone, post hoc grading revealed a poor quality in 14.9% of the stacks and 32.9% of the scans in the remaining 85 patients. After excluding two scans with contouring problems due to scan quality, bone indices obtained by AUTO- and sAUTO-contouring were compared in 83 scans. All AUTO-contours were manually corrected, resulting in significant but small differences in densitometric and trabecular indices (<1.0%). Conclusions: In vivo HR-pQCT scanning of the scaphoid bone is feasible in patients with a clinically suspected scaphoid fracture when using a cast with thumb part. The proportion of poor-quality stacks is similar to radius scans, and AUTO-contouring appears appropriate in good- and poor-quality scans. Thus, HR-pQCT may be promising for diagnosis of and microarchitectural evaluations in suspected scaphoid fractures

    The influence of preoperative determinants on quality of life, functioning and pain after total knee and hip replacement:A pooled analysis of Dutch cohorts

    Get PDF
    Background: Previous research has identified preoperative determinants that predict health related quality of life (HRQoL), functioning and pain after total knee or hip arthroplasty (TKA/THA), but these differed between studies and had opposite directions. This may be due to lack of power and not adjusting for confounders. The present study aims to identify the preoperative determinants that influence health related quality of life (HRQoL), functioning and pain after total knee or hip arthroplasty (TKA/THA). Methods: We pooled individual patient from 20 cohorts with OA patients data (n = 1783 TKA and n = 2400 THA) in the Netherlands. We examined the influence of age, gender, BMI and preoperative values of HRQoL, functioning and pain on postoperative status and total improvement. Linear mixed models were used to estimate the effect of each preoperative variable on a particular outcome for each cohort separately. These effects were pooled across cohorts using a random effects model. Results: For each increase in preoperative point in HRQoL, the postoperative HRQoL increased by 0.51 points in TKA and 0.37 points in THA (SF-36 scale). Similarly, each point increase in preoperative functioning, resulted in a higher postoperative functioning of 0.31 (TKA) and 0.21 (THA) points (KOOS/HOOS-ADL scale). For pain this was 0.18 (TKA) and 0.15 (THA) points higher (KOOS/HOOS-pain scale) (higher means less pain). Even though patients with better preoperative values achieved better postoperative outcomes, their improvement was smaller. Women and patients with a higher BMI had more pain after a TKA and THA. Higher age and higher BMI was associated with lower postoperative HRQoL and functioning and more pain after a THA.Conclusions: Patients with a better preoperative health status have better outcomes, but less improvement. Even though the independent effects may seem small, combined results of preoperative variables may result in larger effects on postoperative outcomes.</p

    Hollandia reeks 77

    No full text
    onderzoeksrappor

    Assessment of the healing of conservatively-treated scaphoid fractures using HR-pQCT

    No full text
    Improving the clinical outcome of scaphoid fractures may benefit from adequate monitoring of their healing in order to for example identify complications such as scaphoid nonunion at an early stage and to adjust the treatment strategy accordingly. However, quantitative assessment of the healing process is limited with current imaging modalities. In this study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was used for the first time to assess the changes in bone density, microarchitecture, and strength during the healing of conservatively-treated scaphoid fractures. Thirteen patients with a scaphoid fracture (all confirmed on HR-pQCT and eleven on CT) received an HR-pQCT scan at baseline and three, six, twelve, and 26 weeks after first presentation at the emergency department. Bone mineral density (BMD) and trabecular microarchitecture of the scaphoid bone were quantified, and failure load (FL) was estimated using micro-finite element analysis. Longitudinal changes were evaluated with linear mixed-effects models. Data of two patients were excluded due to surgical intervention after the twelve-week follow-up visit. In the eleven fully evaluable patients, the fracture line became more apparent at 3 weeks. At 6 weeks, individual trabeculae at the fracture region became more difficult to identify and distinguish from neighboring trabeculae, and this phenomenon concerned a larger region around the fracture line at 12 weeks. Quantitative assessment showed that BMD and FL were significantly lower than baseline at all follow-up visits with the largest change from baseline at 6 weeks (-13.6% and -23.7%, respectively). BMD remained unchanged thereafter, while FL increased. Trabecular thickness decreased significantly from baseline at three (-3.9%), six (-6.7%), and twelve (-4.4%) weeks and trabecular number at six (-4.5%), twelve (-7.3%), and 26 (-7.9%) weeks. Trabecular separation was significantly higher than baseline at six (+13.3%), twelve (+19.7%), and 26 (+16.3%) weeks. To conclude, this explorative HR-pQCT study showed a substantial decrease in scaphoid BMD, Tb.Th, and FL during the first 6 weeks of healing of conservatively-treated scaphoid fractures, followed by stabilization or increase in these parameters. At 26 weeks, BMD, trabecular microarchitecture, and FL were not returned to baseline values

    Assessment of the healing of conservatively-treated scaphoid fractures using HR-pQCT

    Get PDF
    Improving the clinical outcome of scaphoid fractures may benefit from adequate monitoring of their healing in order to for example identify complications such as scaphoid nonunion at an early stage and to adjust the treatment strategy accordingly. However, quantitative assessment of the healing process is limited with current imaging modalities. In this study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was used for the first time to assess the changes in bone density, microarchitecture, and strength during the healing of conservatively-treated scaphoid fractures. Thirteen patients with a scaphoid fracture (all confirmed on HR-pQCT and eleven on CT) received an HR-pQCT scan at baseline and three, six, twelve, and 26 weeks after first presentation at the emergency department. Bone mineral density (BMD) and trabecular microarchitecture of the scaphoid bone were quantified, and failure load (FL) was estimated using micro-finite element analysis. Longitudinal changes were evaluated with linear mixed-effects models. Data of two patients were excluded due to surgical intervention after the twelve-week follow-up visit. In the eleven fully evaluable patients, the fracture line became more apparent at three weeks. At six weeks, individual trabeculae at the fracture region became more difficult to identify and distinguish from neighboring trabeculae, and this phenomenon concerned a larger region around the fracture line at twelve weeks. Quantitative assessment showed that BMD and FL were significantly lower than baseline at all follow-up visits with the largest change from baseline at six weeks (-13.6% and -23.7%, respectively). BMD remained unchanged thereafter, while FL increased. Trabecular thickness decreased significantly from baseline at three (-3.9%), six (-6.7%), and twelve (-4.4%) weeks and trabecular number at six (-4.5%), twelve (-7.3%), and 26 (-7.9%) weeks. Trabecular separation was significantly higher than baseline at six (+13.3%), twelve (+19.7%), and 26 (+16.3%) weeks. To conclude, this explorative HR-pQCT study showed a substantial decrease in scaphoid BMD, Tb.Th, and FL during the first six weeks of healing of conservatively-treated scaphoid fractures, followed by stabilization or increase in these parameters. At 26 weeks, BMD, trabecular microarchitecture, and FL were not returned to baseline values

    The interobserver reliability of the diagnosis and classification of scaphoid fractures using high-resolution peripheral quantitative CT

    Get PDF
    Aims Besides conventional radiographs, the use of MRI, CT, and bone scintigraphy is frequent in the diagnosis of a fracture of the scaphoid. However, which techniques give the best results remain unknown. The investigation of a new imaging technique initially requires an analysis of its precision. The primary aim of this study was to investigate the interobserver agreement of high-resolution peripheral quantitative CT (HR-pQCT) in the diagnosis of a scaphoid fracture. A secondary aim was to investigate the interobserver agreement for the presence of other fractures and for the classification of scaphoid fracture. Methods Two radiologists and two orthopaedic trauma surgeons evaluated HR-pQCT scans of 31 patients with a clinically-suspected scaphoid fracture. The observers were asked to determine the presence of a scaphoid or other fracture and to classify the scaphoid fracture based on the Herbert classification system. Fleiss kappa statistics were used to calculate the interobserver agreement for the diagnosis of a fracture. Intraclass correlation coefficients (ICCs) were used to assess the agreement for the classification of scaphoid fracture. Results A total of nine (29%) scaphoid fractures and 12 (39%) other fractures were diagnosed in 20 patients (65%) using HR-pQCT across the four observers. The interobserver agreement was 91% for the identification of a scaphoid fracture (95% confidence interval (CI) 0.76 to 1.00) and 80% for other fractures (95% CI 0.72 to 0.87). The mean ICC for the classification of a scaphoid fracture in the seven patients diagnosed with scaphoid fracture by all four observers was 73% (95% CI 0.42 to 0.94). Conclusion We conclude that the diagnosis of scaphoid and other fractures is reliable when using HR-pQCT in patients with a clinically-suspected fracture

    Association between bone shape and the presence of a fracture in patients with a clinically suspected scaphoid fracture

    No full text
    Scaphoid fractures are difficult to diagnose with current imaging modalities. It is unknown whether the shape of the scaphoid bone, assessed by statistical shape modeling, can be used to differentiate between fractured and non-fractured bones. Therefore, the aim of this study was to investigate whether the presence of a scaphoid fracture is associated with shape modes of a statistical shape model (SSM). Forty-one high-resolution peripheral quantitative computed tomography (HR-pQCT) scans were available from patients with a clinically suspected scaphoid fracture of whom 15 patients had a scaphoid fracture. The scans showed no motion artefacts affecting bone shape. The scaphoid bones were semi-automatically contoured, and the contours were converted to triangular meshes. The meshes were registered, followed by principal component analysis to determine mean shape and shape modes describing shape variance. The first five out of the forty shape modes cumulatively explained 87.8% of the shape variance. Logistic regression analysis was used to study the association between shape modes and fracture presence. The regression models were used to classify the 41 scaphoid bones as fractured or non-fractured using a cut-off value that maximized the sum of sensitivity and specificity. The classification of the models was compared with fracture diagnosis on HR-pQCT. A regression model with four shape modes had an area under the ROC-curve of 72.3% and correctly classified 75.6% of the scaphoid bones (fractured: 60.0%, non-fractured: 84.6%). To conclude, fracture presence in patients with a clinically suspected scaphoid fracture appears to be associated with the shape of the scaphoid bone

    Association between bone shape and the presence of a fracture in patients with a clinically suspected scaphoid fracture

    Get PDF
    Scaphoid fractures are difficult to diagnose with current imaging modalities. It is unknown whether the shape of the scaphoid bone, assessed by statistical shape modeling, can be used to differentiate between fractured and non-fractured bones. Therefore, the aim of this study was to investigate whether the presence of a scaphoid fracture is associated with shape modes of a statistical shape model (SSM). Forty-one high-resolution peripheral quantitative computed tomography (HR-pQCT) scans were available from patients with a clinically suspected scaphoid fracture of whom 15 patients had a scaphoid fracture. The scans showed no motion artefacts affecting bone shape. The scaphoid bones were semi-automatically contoured, and the contours were converted to triangular meshes. The meshes were registered, followed by principal component analysis to determine mean shape and shape modes describing shape variance. The first five out of the forty shape modes cumulatively explained 87.8% of the shape variance. Logistic regression analysis was used to study the association between shape modes and fracture presence. The regression models were used to classify the 41 scaphoid bones as fractured or non-fractured using a cut-off value that maximized the sum of sensitivity and specificity. The classification of the models was compared with fracture diagnosis on HR-pQCT. A regression model with four shape modes had an area under the ROC-curve of 72.3% and correctly classified 75.6% of the scaphoid bones (fractured: 60.0%, non-fractured: 84.6%). To conclude, fracture presence in patients with a clinically suspected scaphoid fracture appears to be associated with the shape of the scaphoid bone
    corecore