3 research outputs found

    TNIK, a novel androgen receptor-repressed gene, is a potential biomarker for neuroendocrine prostate cancer

    No full text
    Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase upregulated and amplified in pancreatic and gastric cancer respectively. TNIK has also been identified as a potential therapeutic target of colorectal cancer. However, the role of TNIK in prostate cancer (PCa) has not been investigated. Interrogating public human PCa patient data, we found that TNIK expression is associated with an aggressive form of PCa termed neuroendocrine prostate cancer (NEPC). Treatment-induced NEPC can arise as a consequence of strong selective pressure from androgen receptor (AR) pathway inhibition. Clinically, TNIK expression is positively correlated with neuroendocrine (NE) markers and inversely correlated with androgen regulated genes. In agreement, our in vitro studies reveal that TNIK expression is increased under AR pathway inhibition. We found that TNIK is transcriptionally repressed by androgen via direct binding of the AR at the TNIK locus. Through gain of function studies, we demonstrated that TNIK is not required for NE differentiation. Likewise, loss of function studies using siRNA or small molecule inhibitors targeting TNIK did not have significant effect on the growth of Enzalutamide-resistant cells with NE phenotype in vitro. Overall, our results indicate that TNIK may serve as a possible biomarker for NEPC.Medicine, Faculty ofExperimental Medicine, Division ofMedicine, Department ofGraduat

    The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.

    No full text
    Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor-resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo Mechanistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with classic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE Understanding the contribution of the AR to the emergence of highly lethal, drug-resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design. Our first-in-field data underscore the consequences of potent AR inhibition in prostate tumors, revealing a novel mechanism of AR-dependent control of neuroendocrine differentiation, and uncover BRN2 as a potential therapeutic target to prevent emergence of NEPC. Cancer Discov; 7(1); 54-71. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1
    corecore