9 research outputs found

    The photometric observation of the quasi-simultaneous mutual eclipse and occultation between Europa and Ganymede on 22 August 2021

    Full text link
    Mutual events (MEs) are eclipses and occultations among planetary natural satellites. Most of the time, eclipses and occultations occur separately. However, the same satellite pair will exhibit an eclipse and an occultation quasi-simultaneously under particular orbital configurations. This kind of rare event is termed as a quasi-simultaneous mutual event (QSME). During the 2021 campaign of mutual events of jovian satellites, we observed a QSME between Europa and Ganymede. The present study aims to describe and study the event in detail. We observed the QSME with a CCD camera attached to a 300-mm telescope at the Hong Kong Space Museum Sai Kung iObservatory. We obtained the combined flux of Europa and Ganymede from aperture photometry. A geometric model was developed to explain the light curve observed. Our results are compared with theoretical predictions (O-C). We found that our simple geometric model can explain the QSME fairly accurately, and the QSME light curve is a superposition of the light curves of an eclipse and an occultation. Notably, the observed flux drops are within 2.6% of the theoretical predictions. The size of the event central time O-Cs ranges from -14.4 to 43.2 s. Both O-Cs of flux drop and timing are comparable to other studies adopting more complicated models. Given the event rarity, model simplicity and accuracy, we encourage more observations and analysis on QSMEs to improve Solar System ephemerides.Comment: 23 pages, 5 appendixes, 16 figures, 7 table

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    N‐stabilized metal single atoms enabled rich defects for noble‐metal alloy toward superior water reduction

    No full text
    Abstract The traditional methods of introducing defects into alloy catalysts, such as dealloying, quenching, and doping, usually require complicated processes, rendering less controllability to the products and performances. Herein, a simple fabrication method for vacancy‐rich IrCo alloy nanoparticles supported on N‐doped carbon sheets (denoted as D‐IrCo/NC) is applied by post‐annealing the single atom (Ir and Co) dispersed precursors. The mobile single atoms and the coalescences of metallic clusters are directly observed via in situ transmission electron microscopy. Compared to the alloy catalysts obtained by direct calcination or other traditional methods, the D‐IrCo4.9/NC catalyst is enriched with vacancy defects and only demands an overpotential of 14 mV at j = 10 mA/cm2 for HER. Density functional theory (DFT) calculations reveal that the under‐coordinated Ir sites possess the lowest hydrogen adsorption energy. This novel preparation method is universal, and this work also provides a facile strategy to fabricate highly defective alloy catalysts evolved from single atom precursors

    Single-hit inactivation drove tumor suppressor genes out of the X chromosome during evolution

    No full text
    Cancer-related genes are under intense evolutionary pressure. In this study, we conjecture that X-linked tumor suppressor genes (TSG) are not protected by the Knudson's two-hit mechanism and are therefore subject to negative selection. Accordingly, nearly all mammalian species exhibited lower TSG-to-noncancer gene ratios on their X chromosomes compared with nonmammalian species. Synteny analysis revealed that mammalian X-linked TSGs were depleted shortly after the emergence of the XY sex-determination system. A phylogeny-based model unveiled a higher X chromosome-to-autosome relocation flux for human TSGs. This was verified in other mammals by assessing the concordance/discordance of chromosomal locations of mammalian TSGs and their orthologs in Xenopus tropicalis. In humans, X-linked TSGs are younger or larger in size. Consistently, pan-cancer analysis revealed more frequent nonsynonymous somatic mutations of X-linked TSGs. These findings suggest that relocation of TSGs out of the X chromosome could confer a survival advantage by facilitating evasion of single-hit inactivation.This work was supported by the Shenzhen Science and Technology Program (JCYJ20180508161604382) and Shenzhen Science and Technology Innovation Commission. D. Plewczynski was supported by Polish National Science Center (2014/15/B/ST6/05082) and Foundation for Polish Science (TEAM to D. Plewczynski) cofinanced by the European Union under the European Regional Development Fund

    Vitamin D3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification

    No full text
    Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea. TcdB is a major C. difficile exotoxin that activates macrophages to promote inflammation and epithelial damage. Lysosome impairment is a known trigger for inflammation. Herein, we hypothesize that TcdB could impair macrophage lysosomal function to mediate inflammation during CDI. Effects of TcdB on lysosomal function and the downstream pro-inflammatory SQSTM1/p62-NFKB (nuclear factor kappa B) signaling were assessed in cultured macrophages and in a murine CDI model. Protective effects of two lysosome activators (i.e., vitamin D3 and carbamazepine) were assessed. Results showed that TcdB inhibited CTNNB1/β-catenin activity to downregulate MITF (melanocyte inducing transcription factor) and its direct target genes encoding components of lysosomal membrane vacuolar-type ATPase, thereby suppressing lysosome acidification in macrophages. The resulting lysosomal dysfunction then impaired autophagic flux and activated SQSTM1-NFKB signaling to drive the expression of IL1B/IL-1β (interleukin 1 beta), IL8 and CXCL2 (chemokine (C-X-C motif) ligand 2). Restoring MITF function by enforced MITF expression or restoring lysosome acidification with 1α,25-dihydroxyvitamin D3 or carbamazepine suppressed pro-inflammatory cytokine expression in vitro. In mice, gavage with TcdB-hyperproducing C. difficile or injection of TcdB into ligated colon segments caused prominent MITF downregulation in macrophages. Vitamin D3 and carbamazepine lessened TcdB-induced lysosomal dysfunction, inflammation and histological damage. In conclusion, TcdB inhibits the CTNNB1-MITF axis to suppress lysosome acidification and activates the downstream SQSTM1-NFKB signaling in macrophages during CDI. Vitamin D3 and carbamazepine protect against CDI by restoring MITF expression and lysosomal function in mice. Abbreviations: ATP6V0B: ATPase H+ transporting V0 subunit b; ATP6V0C: ATPase H+ transporting V0 subunit c; ATP6V0E1: ATPase H+ transporting V0 subunit e1; ATP6V1H: ATPase H+ transporting V1 subunit H; CBZ: carbamazepine; CDI: C. difficile infection; CXCL: chemokine C-X-X motif ligand; IL: interleukin; LAMP1: lysosomal-associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; LEF: lymphoid enhancer binding factor 1; MITF: melanocyte inducing transcription factor; NFKB: nuclear factor kappa B; PMA: phorbol 12-myristate 13-acetate; TcdA: Clostridial toxin A; TcdB: Clostridial toxin B; TFE3: transcription factor E3; TFEB: transcription factor EB.Published versionThis work was supported by the National Natural Science Foundation of China [82070576] and the Hong Kong Food and Health Bureau (FHB) Commissioned Health and Medical Research Fund [CID-CUHK-C]

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore