765 research outputs found

    Double phase anisotropic variational problems involving critical growth

    Full text link
    In this paper, we investigate some existence results for double phase anisotropic variational problems involving critical growth. We first establish a Lions type concentration-compactness principle and its variant at infinity for the solution space, which are our independent interests. By employing these results, we obtain a nontrivial nonnegative solution to problems of generalized concave-convex type. We also obtain infinitely many solutions when the nonlinear term is symmetric. Our results are new even for the p()p(\cdot)-Laplace equations

    Determination of Hydrogen Diffusion Parameters of Ferritic Steel from Electrochemical Permeation Measurement under Tensile Loads

    Get PDF
    The hydrogen permeation experiment, performed with a stepwise permeation sequence involving "1st permeation-desorption-2nd permeation under loading, demonstrates that fine blister cracks are frequently observed on the steel surface in hydrogen charging side after the 2nd permeation under the load over 95% of yield strength of the steel. To accommodate the experimental phenomena under the loading conditions, a numerical model is developed for determination of hydrogen diffusion parameters of the sour-resistant ferritic steel evaluated under tensile stress in plastic ranges. To solve the modified diffusion equation, a numerical finite difference method (FDM) is employed. The diffusion parameters determined by curve-fitting with the newly proposed diffusion equation indicates that, with the transition of mechanical domain from local-plasticity to generalized-plasticity, a big increase in the crack formation rate and hydrogen capture rate per irreversible trap are observed. It suggests that the transition probability for hydrogen transport from interstitial lattice site to irreversible trap site increases with the stress level. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.1110Ysciescopu

    CHD5 is down-regulated through promoter hypermethylation in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonhistone chromosomal proteins in concert with histones play important roles in the replication and repair of DNA and in the regulation of gene expression. The deregulation of these proteins can contribute to the development of a variety of diseases such as cancer. As a nonhistone chromosomal protein, chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as the product of a novel tumor suppressor gene (TSG), promoting the transcription of p19<sup><it>ink4a </it></sup>and p16<sup><it>arf</it></sup>. The inactivation of CHD5 was achieved partly through genetic deletion since it is located in 1p36, a region frequently deleted in human tumors. In this study, we aim to study the involvement of CHD5 in gastric cancer, the second most common cancer worldwide.</p> <p>Methods</p> <p>CHD5 expression in a panel of gastric cancer cells were determined by quantitative RT-PCR. The methylation of CHD5 was evaluated by methylation specific PCR and bisulfite genome sequencing. The effect of CHD5 on growth of gastric cancer cells was tested by colony formation assay.</p> <p>Results</p> <p>CHD5 expression was down-regulated in all of gastric cancer cell lines used (100%, 7/7) and significantly restored after pharmacological demethylation. Methylation of CHD5 promoter was detected in all of seven gastric cancer cell lines and in the majority of primary gastric carcinoma tissues examined (73%, 11/15). Finally, ectopic expression of CHD5 in gastric cancer cells led to a significant growth inhibition.</p> <p>Conclusion</p> <p>CHD5 was a TSG epigenetically down-regulated in gastric cancer.</p

    Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach

    Get PDF
    This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions

    Epitaxial Bi2FeCrO6 Multiferroic Thin Films

    Full text link
    We present here experimental results obtained on Bi2FeCrO6 (BFCO) epitaxial films deposited by laser ablation directly on SrTiO3 substrates. It has been theoretically predicted, by Baettig and Spaldin, using first-principles density functional theory that BFCO is ferrimagnetic (with a magnetic moment of 2 Bohr magneton per formula unit) and ferroelectric (with a polarization of ~80 microC/cm2 at 0K). The crystal structure has been investigated using X-ray diffraction which shows that the films are epitaxial with a high crystallinity and have a degree of orientation depending of the deposition conditions and that is determined by the substrate crystal structure. Chemical analysis carried out by X-ray Microanalysis and X-ray Photoelectron Spectroscopy (XPS) indicates the correct cationic stoichiometry in the BFCO layer, namely (Bi:Fe:Cr = 2:1:1). XPS depth profiling revealed that the oxidation state of Fe and Cr ions in the film remains 3+ throughout the film thickness and that both Fe and Cr ions are homogeneously distributed throughout the depth. Cross-section high-resolution transmission electron microscopy images together with selected area electron diffraction confirm the crystalline quality of the epitaxial BFCO films with no identifiable foreign phase or inclusion. The multiferroic character of BFCO is proven by ferroelectric and magnetic measurements showing that the films exhibit ferroelectric and magnetic hysteresis at room temperature. In addition, local piezoelectric measurements carried out using piezoresponse force microscopy (PFM) show the presence of ferroelectric domains and their switching at the sub-micron scale.Comment: Accepted for publication in Philosophical Magazine Letter
    corecore