1,715 research outputs found

    Drape simulation using solid-shell elements and adaptive mesh subdivision

    Get PDF
    In this paper, 4-node quadrilateral and 3-node triangular solid-shell elements are applied to drape simulations. With locking issues alleviated by the assumed natural strain method and plane-stress enforcement, static and dynamic drape problems are attempted by the quadrilateral element. If the drape is deep and the mesh density is inadequate, non-realistic sharp folds are predicted due to the non-physical interpenetration of top and bottom element surfaces. To avoid the interpenetration, a reversible adaptive subdivision based on the 1–4 splitting method is developed. To ensure displacement compatibility among elements at different subdivision levels, macro-transition elements are formed by quadrilateral and triangular solid-shell elements. To reduce the dynamic oscillation induced by newly inserted nodes, the discrete Kirchhoff condition is employed to determine the related nodal variables. Dynamic drape examples using adaptive meshing are presented. It can be seen that the predictions look realistic and deep drapes can be predicted with the interpenetration avoided yet the required number of nodes can be kept relatively small.postprin

    Modified and Trefftz unsymmetric finite element models

    Get PDF
    The unsymmetric finite element method employs compatible test functions but incompatible trial functions. The pertinent 8-node quadrilateral and 20-node hexahedron unsymmetric elements possess exceptional immunity to mesh distortion. It was noted later that they are not invariant and the proposed remedy is to formulate the element stiffness matrix in a local frame and then transform the matrix back to the global frame. In this paper, a more efficient approach will be proposed to secure the invariance. To our best knowledge, unsymmetric 4-node quadrilateral and 8-node hexahedron do not exist. They will be devised by using the Trefftz functions as the trial function. Numerical examples show that the two elements also possess exceptional immunity to mesh distortion with respect to other advanced elements of the same nodal configurations.postprin

    Nitrogen removal from the saline sludge liquor by electrochemical denitrification

    Get PDF
    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4 + - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitroger removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 μg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludqe liquor. © IWA Publishing 2006.postprin

    Effective modulus of polycrystalline aggregates in different geometrical configurations

    Get PDF
    In the present study, a finite element scheme with random distribution strategy is employed to systematically investigate the modulus difference of polycrystalline copper aggregates in different geometrical configurations (three-dimensional bulk and thin film configurations). Firstly, the finite element simulation is performed to estimate the effective elastic constants in three-dimensional bulk configuration. The numerical estimations are in good agreement with the existing analytical solutions and experimental measurements. Secondly, the proven finite element scheme is extended to the prediction of the effective moduli of the free-standing and substrate-attached thin films. For the free-standing thin film, the effective Young's modulus decreases with reducing the film thickness. For the substrate-attached thin film, its effective modulus is affected by the relative stiffness between the substrate and the film. The spread of the effective moduli in different configurations could be as large as 20%. © 2010 Elsevier B.V.postprin

    Career Experience of Asian Ethnicity Immigrants In Australia

    Full text link
    The literature has shown that most immigrants reported a negative experience with their career in their newly adopted countries. In particular, they complained of loss in income and status, especially for those from non-English speaking countries. The Social Psychology literature has been shown that ethnic identity can influence an immigrant's perception of the fairness of organizational recruitment and job acceptance intention. However, little is known of the impact of immigrant's ethnic identity and how this impacts on their career experience. This is the subject of the current paper as we draw upon the literature on ethnic identity and social cognition career theory to examine the career experience 196 `visible racial minority' individuals in Australia. These individuals were immigrants from Asia (first generation Asian Australians) and Asian-born Australians (second generation Asian Australians) in Australia

    Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133

    Get PDF
    Tumor relapse after therapy typifies hepatocellular carcinoma (HCC) and is believed to be attributable to residual cancer stem cells (CSCs) that survive treatment. We have previously identified a CSC population derived from HCC that is characterized by CD133. Despite our growing knowledge of the importance of this subset of cells in driving HCC, the regulatory mechanism of CD133 is not known. Epigenetic changes are believed to be essential in the control of cancer and stem cells. Here, we report the epigenetic regulation of CD133 by miR-142-3p. The interaction between CD133 and miR-142-3p was identified by in silico prediction and substantiated by luciferase reporter analysis. Expression of CD133 was found to be inversely correlated with miR-142-3p in HCC clinical samples as well as in cell lines. Importantly, lower miR-142-3p expression in HCC was significantly associated with worst survival. Functional studies with miR-142-3p stably transduced in HCC cells demonstrated a diminished ability to self-renew, initiate tumor growth, invade, migrate, induce angiogenesis and resist chemotherapy. Rescue experiments whereby CD133 and miR-142-3p is simultaneously overexpressed compensated the deregulated ability of the cells to confer these features. Thus, miR-142-3p directly targets CD133 to regulate its ability to confer cancer and stem cell-like features in HCC.published_or_final_versio

    ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma

    Get PDF
    Frequent tumor relapse in hepatocellular carcinoma (HCC) has been commonly attributed to the presence of residual cancer stem cells (CSCs) after conventional treatments. We have previously identified and characterized CD133 to mark a specific CSC subset in HCC. In the present study, we found endogenous and secretory annexin A3 (ANXA3) to play pivotal roles in promoting cancer and stem cell-like features in CD133+ liver CSCs through a dysregulated JNK pathway. Blockade of ANXA3 with an anti-ANXA3 monoclonal antibody in vitro as well as in human HCC xenograft models resulted in a significant reduction in tumor growth and self-renewal. Clinically, ANXA3 expression in HCC patient sera closely associated with aggressive clinical features. Our results suggest that ANXA3 can serve as a novel diagnostic biomarker and that the inhibition of ANXA3 may be a viable therapeutic option for the treatment of CD133+ liver-CSC-driven HCC. © 2015 The Authors.published_or_final_versio

    Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    Get PDF
    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.ope
    corecore