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Abstract 

In this paper, 4-node quadrilateral and 3-node triangular solid-shell elements are applied to drape 

simulations. With locking issues alleviated by the assumed natural strain method and plane-stress 

enforcement, static and dynamic drape problems are attempted by the quadrilateral element. If the 

drape is deep and the mesh density is inadequate, non-realistic sharp folds are predicted due to the 

non-physical interpenetration of top and bottom element surfaces. To avoid the interpenetration, a 

reversible adaptive subdivision based on the 1-4 splitting method is developed. To ensure 

displacement compatibility among elements at different subdivision levels, macro-transition 

elements are formed by quadrilateral and triangular solid-shell elements. To reduce the dynamic 

oscillation induced by newly inserted nodes, the discrete Kirchhoff condition is employed to 

determine the related nodal variables. Dynamic drape examples using adaptive meshing are 

presented. It can be seen that the predictions look realistic and deep drapes can be predicted with the 

interpenetration avoided yet the required number of nodes can be kept relative small.  
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1.  Introduction 

In recent decades, a desire has been arisen in the apparel industry on how to automate the design 

and manufacture of clothing as well as to reduce the time and effort in the design process [1]. 

Meanwhile, in electronic commerce, people would enjoy seeing how a garment drapes on a virtual 

human body based on the figures of the potential customer through the internet before making an 

order. In this light, fabric drape simulation has drawn considerable attention [2-16].  

The computational methods used in drape simulation can be broadly classified into the 

geometrically-based and the physically-based. Early works mainly belong to the former which 

employs geometric equations and constraints to model folds and creases of deformed fabrics 

without considering their physical properties [2, 3]. The physically-based method, also called the 

mechanics approach, takes the principle of mechanics and the material properties of fabric into 

account. Typical examples of physically-based method are particle-based method [4-9] and the 

finite element method (FEM) [10-15]. In the former, the fabric is assumed as discrete particles or 

masses which are located at the grid-points while the deformation energies are quantified by virtue 

of springs connected to grid-points or grid-lines. The particle-based models are sometimes known 

as mass-spring models. Their major shortcomings are the stringent requirement on particle/mass 

distributions as well as the laborious treatments for oblique and curved boundaries.  

FEM as a well-received numerical method for mechanics problems had been naturally applied 

to fabric drape simulation. The most direct application is the shell finite element method, e.g., thin-

shell elements [12] and degenerated-shell elements [10, 11]. In recent years, many solid-shell 

elements have been devised [17-25]. These elements are typically defined by two layers of nodes 

positioned at the top and bottom surfaces of the plates/shells and equipped with three translational 

dofs per node, see Figure 1(a). Alternatively, they can be defined by the mid-surface nodes 

equipped with three mid-surface nodal translational dofs and three nodal relative translational dofs 

between the two ends of the nodal directors, see Figure 1(b). For convenience, the latter 

configuration is adopted hereafter. Similar to the degenerated shell elements, the well-known shear 

and membrane lockings also plague the solid-shell elements. Remedies such as assumed natural 

strain (ANS) method [18-22, 24, 25] and the hybrid formulation [17, 22, 23] have been resorted to. 

Trapezoidal locking occurs when lower order solid-shell elements are applied to model curved shell 

structures. It is so-named because the element cross-section is a trapezoid. The ANS method is 

commonly used to alleviate this locking deficiency by sampling the normal strain along the nodal 

director [19-22, 24]. Solid-shell elements also suffer from the thickness locking which is caused by 

the Poisson’s ratio coupling of thickness normal stress and in-plane strains in the constitutive 

matrix. When the element is subjected to pure bending, a plane-strain state is predicted instead of 

the physical plane-stress condition. This locking deficiency is automatically resolved when the zero 
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Poisson’s ratio is assumed. Other successful remedies include the hybrid-stress method [20, 22], the 

modified generalized laminate stiffness matrix [21-23], the enhanced assumed strain method [18, 

23, 25] and the plane-stress enforcement [17, 19, 24].  

 

  
(a) (b) 

Figure 1.  (a) The 8-node hexahedral solid-shell element; (b) the 4-node quadrilateral solid-shell element. 

 

Solid-shell elements have gained considerable success in structural analysis. Comparisons 

between the degenerated and solid-shell elements indicated that the latter can undertake large load 

increments and converge by consuming less iterations [17]. Solid-shell element was also applied to 

fabric drape simulation in [13] where the 4-node quadrilateral solid-shell element was employed in 

static drape analysis and the predictions appeared to be promising. In this paper, both the 4-node 

quadrilateral and 3-node triangular solid-shell elements are employed. In both element formulations, 

the ANS methods are employed to avoid the transverse shear and trapezoidal lockings while the 

plane-stress enforcement is used to resolve thickness locking. The 4-node element is firstly applied 

to drape simulations. Natural and pleasant predictions are obtained for most problems. However, 

when the drape is deep, unrealistic sharp folds are predicted due to the non-physical interpenetration 

of top and bottom element surfaces. This phenomenon was also reported in [13], see Figure 2(a). 

Schematic diagrams of typical elements undergoing interpenetration are depicted in Figure 2(b) 

where the upper and lower element surfaces interpenetrate each other whilst the mid-surface 

remains un-deformed but some nodal directors are reversed. However, the remedy suggested in [13] 

does not always work. To circumvent the interpenetration, a reversible local adaptive subdivision 

based on the 1-4 splitting method is developed. To ensure displacement compatibility between 

elements at different subdivision levels, macro-transition elements are formed by the quadrilateral 

and triangular solid-shell elements. To attenuate the dynamic oscillation induced in each 

subdivision procedure, the discrete Kirchhoff condition [26-28] is employed to determine the 

kinematic variables of newly inserted mid-edge node. Lastly, drape examples attempted by using 

the adaptive mesh subdivision are presented. The predictions look realistic and deep drapes can be 

predicted with interpenetration avoided by using less nodes. 
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(a) (b) 

Figure 2. (a) Unrealistic sharp folds formed due to interpenetration; (b) schematic diagrams for 

interpenetration of the top and bottom element surfaces.    denotes the deformed top surface, - - - 

denotes the deformed bottom surface and  denotes the nodal director [13]. 

 

 

2.  The 4-node Quadrilateral and 3-node Triangular Solid-shell Elements 

In this section, the geometric nonlinear formulations of the 3-node and 4-node solid-shell elements 

using the total Lagrangian description are presented.  

 

2.1  The 4-node quadrilateral solid-shell element 

For the 4-node quadrilateral solid-shell element portrayed in Figure 1(b), the initial coordinate 

vector X and displacement vector U with respect to X can be interpolated as 

4 4
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where N1 = (1- ξ)(1-η)/4, N2 = (1+ ξ)(1-η)/4, N3 = (1+ ξ)(1+η)/4 and N4 = (1- ξ)(1+η)/4; ξ, η [-1,+1] 

are the natural coordinates of mid-surface; z[-h/2,+h/2] is the coordinate along the director and h 

is the thickness; X0 and Xn denote the initial mid-surface geometry and its normalized director 

defined as 
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T
 is the element nodal displacement vector; No and Nn are 

self-defined. 

The natural Green strain components with respect to ξ, η and z can be derived as 

 ( , , , , ) / 2 ( , , + , , )/4T T T T

ij i j j i i j j i   X U X U U U U U   (2) 



5 

 

where i, j = ξ, η and z. Since the second order z-terms in in-plane strains (ɛξξ, ɛηη and γξη) and the 

first order z-terms in transverse shear strains (γzξ and γzη) are often, if not always, truncated in shell 

formulation, the individual strain components can be written as 

           , , , , /2T T m bz          X U U U , , , , , /2T T m bz          X U U U ,  

           ( , , , , ) ( , , , , ) / 2T T T T m bz                X U X U U U U U ,  

           , , , , /2 / 2T T T T

zz z z z z n n n n    X U U U X U U U ,  

           ( , , ) ( , , ) / 2T T T T

z n o o n n o o n       X U X U U U U U , 

           ( , , ) ( , , ) / 2T T T T

z n o o n n o o n       X U X U U U U U                 (3) 

in which the symbol ‘ ’ indicates the aforementioned truncations, ‘m’ and ‘b’ stand for membrane 

and bending, respectively.  

To avoid transverse shear and trapezoidal lockings by ANS, the natural transverse shear strains 

and the thickness normal strain are modified to be 

 
0, 1 0, 1 1, 0 1, 0

1 1 1 1
(1 ) (1 ) ,  (1 ) (1 )

2 2 2 2
z z z z z z            
         

       
             (4) 

                    
1 2 3 41, 1 1, 1 1, 1 1, 1zz zz zz zz zzN N N N

       
    
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         .    (5) 

The material properties are often defined under a local physical frame (x, y, z) with the x-y-plane 

parallel to the mid-surface of the shell and the z-axis orthogonal to the x-y-plane accordingly. Then, 

the Green strains under (x, y, z) can be obtained by the following transformation 

                      

m b

xx

m b

yy m b

m b

xy

z z
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zx z

t T T

zy z





 

 
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γ T d d ,  [ ( ) / 2]zz   d d   (6) 

where T’s are the strain transformation matrices; ’s and ’s are the linear and nonlinear strain-

displacement matrices, respectively. By (i) enforcing the plane stress condition, (ii) assuming the 

uncoupled nature of the bending, membrane and transverse shear energies and (iii) approximating 

the Jacobian determinant by its counterpart at the mid-surface, the element strain energy can be 

expressed as: 
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where Cm, Cb and Ct are the membrane, bending and transverse shear rigidity matrices, 

respectively; and the approximate Jacobian determinant is given as 

 
0

det[ , ,  , ] det[ , ,  ]o z o o nz
J    
 X X X X X X   (8) 

Substitute Eq.(6) into Eq.(7), then the element internal force vector f and tangential stiffness matrix 

kt required for the solution procedures can be derived through 

eU



f

d
 and ( )

T e
T

t

U  
 
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f
k

d d d
                                            (9) 

 

2.2  The 3-node triangular solid-shell element 

For a 3-node triangular solid-shell element depicted in Figure 3(a), the initial coordinate vector 

X and displacement vector U with respect to X can be interpolated as 

3 3
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in which N1 = r, N2 = s and N3 = t; r, s, t are the area coordinates and r =1-s-t is treated as a 

dependent variable. Recalling the strain expression in Eq.(2) as well as the truncating 

approximations in Eq.(3), the natural in-plane and thickness normal Green strain components for 

the triangular element are written as 

, , , , /2T T m b

ss s s s s ss ssz    X U U U , , , , , /2T T m b
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          , , , , /2 / 2T T T T
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To overcome the transverse shear locking, the natural transverse shear strains at the three mid-edge 

points (see Figure 3(b)) are firstly obtained as [21]: 
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  (12) 

in which the differentiation operators are defined as 
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(a) (b) 

Figure 3.  (a) The 3-node triangular solid-shell element; (b) the sampled natural transverse shear strains 
[21]. 

 

Extrapolating  zr , zs  and zt  to the three element nodes, one can derive: 
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where  T

r x r ox  e X ,  T

r y r oy  e X ,  T

s x s ox  e X ,  T

s y s oy  e X ,  T

t x t ox  e X , 

 T

t y t oy  e X ; ex, ey and ez are the unit vectors of the local physical coordinate system (x,y,z). 

Then, the physical transverse shear strains can be obtained by the nodal interpolation, i.e. 

 1 2 3[ , ]T

zx zy r s t    γ γ γ γ   (14) 

The trapezoidal locking could be alleviated by sampling and interpolating the strain along the three 

nodal directors, namely 

 
0 0 0zz zz zz zzs t t r r s

r s t   
     

        (15) 

The treatment on thickness locking and also the remaining geometric nonlinear formulation for the 

3-node triangular solid-shell element just analogically follow the same procedures as its 4-node 

counterpart. 

For the mid-surface integration, the three-point rule and the second order Gaussian quadrature 

are employed for the triangular and quadrilateral elements, respectively.  
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3.  Static Fabric Drape Simulation 

In this section, static analyses on fabric drape examples from [9, 10, 13, 15] are implemented by 

using the quadrilateral solid-shell element. With Kt and F denoting the global tangential stiffness 

matrix and global internal force vector assembled from kt and f in Eq.(9), D denoting the global 

nodal displacement vector and ∆D denoting the iterative refinement of D, the following global 

equation can be yielded: 

 t   K D P F   (16) 

in which P is the global external force vector. If the full Newton-Raphson iteration is used to solve 

the equation, we have  

( 1) ( ) ( 1)i i i

t

   K D P F  and 
( ) ( 1) ( )i i i D D D                                  (17) 

As fabric is very weak in bending, the displacement refinement can be very large and leads to 

convergent problem. Similar to [7, 13, 15], a small multiplier is applied to the refinement, namely 

( ) ( 1) ( )i i i  D D D . The multiplier λ is taken to be 

 3 2

(i) (i)
10 ~ 10

max max

f fL L
  

 D D
  (18) 

where Lf is the free-hanging length of fabric and the denominator denotes the maximum absolute 

value of all the entries in ΔD
(i)

. In all examples, the wool fabric with the mechanical properties in 

Table 1 is considered. Before deformation, the warp and weft directions are parallel to the global X- 

and Y- axes, respectively, unless otherwise specified. In Sections 3.1, 3.2 and 3.3, dense meshes of 

Abaqus’s S4R element are employed to compute the reference solutions by using Abaqus’s default 

automatic load stepping. On the other hand, S4R fails to converge for the problems in Sections 3.4 

and 3.5. 

 

Table 1  Mechanical properties of wool fabrics [10]. 

Tensile rigidity 

(gf/cm) 

Shear rigidity 

(gf/cm) 

Bending rigidity 

 (gf cm
2
/cm) 

Weight 

 (gf/cm
2
) 

Thickness h 

(cm) 

Warp Weft  

41.8 

Warp Weft Torsion  

0.019 

 

0.0593 1118.2 759.5 0.083 0.063 0.027 

 

3.1  A clamped fabric strip drapes under self-weight 

In this example, two wool strips of unit width cut along the warp and weft directions are 

considered. Both strips are clamped at one end with 5 cm free-hanging length and drape under self-

weight. The strips are modelled by 10×1 and 20×1 quadrilateral elements. The deformed warp-cut 

strip predicted by 10×1 elements is shown in Figure 4(a) for visual illustration. The side views of 
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the two deformed strips predicted by using two mesh densities are shown in Figure 4(b). Compared 

with the reference solutions yielded by 50×5 S4R elements, it can be seen that the present 

predictions agree well with the reference solutions. 

 

 
 

(a) (b) 

Figure 4.  A 5×1 cm wool strip clamped at one end. (a) The isometric view of the deformed warp-cut strip 

predicted by 10×1 elements; (b) the side view of the deformed predictions. 

 

3.2  Square fabric sheet draped over a square pedestal 

In this example, a 20×20 cm square wool fabric sheet is draped over a 10×10 cm square 

pedestal. Instead of considering only one quarter of the sheet [13], the whole fabric is analyzed here 

to assess the symmetry of predictions. By using 24×8×4 and 48×16×4 quadrilateral elements, the 

deformed shape of the fabric is computed and shown in Figure 5(a) and (b), respectively. In Figure 

5(c), the projected boundaries of the draped fabrics onto the X-Y plane are depicted and compared 

with two reference solutions. One is the experimental measured result which was conducted by 

Kang & Yu [10] and the other is the prediction obtained by using 90×30×4 S4R elements. It can be 

seen that the prediction by 24×8×4 solid-shell elements is less stiff along the warp direction but 

more flexible at the weft direction than both reference solutions. With the mesh refined to 48×16×4 

elements, the prediction fits well with the reference finite element (FE) solution and its visual 

depiction in Figure 5(b) appears to be realistic. Furthermore, all the FE predictions are symmetric 

whereas the experimental shape of Kang & Yu is asymmetric as a result of complex effects 

involved in experiment such as the inhomogeneity of the fabrics, non-uniformity of the woven 

structure, asymmetry in the experimental setup, etc. 
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(a) (b) 

 
(c) 

Figure 5.  A 20×20 cm square fabric sheet draped over a 10×10 cm square pedestal. (a) The top and 

isometric views predicted by 24×8×4 elements; (b) the top and isometric views predicted by 48×16×4 

elements; (c) the deformed boundary projected onto X-Y plane. 

 

3.3  Circular fabric sheet draped over a circular pedestal 

In this example, a Ø25.4 cm circular wool fabric sheet is draped over a Ø12.7 cm pedestal. The 

whole fabric is modeled by 10×40 and 20×80 quadrilateral elements. The draped shape predicted by 

the finer mesh is shown in Figure 6(a). The projected boundaries of the draped fabrics onto the X-Y 

plane are extracted and compared with the experimental result reported in [10] and the FE 

prediction by 30×120 S4R elements, see Figure 6(b). It can be seen again that all three FE solutions 

are symmetric while the experiment result is not. The draped fabrics predicted by FEM exhibit 

diamond shape with four folds which are consistent to the experiment result. The prediction of 

10×40 solid-shell elements is marginally more rigid than the FE reference solution which, in turn, is 

more rigid than the experiment result. With the mesh refined to 20×80 elements, the prediction gets 

softer and agrees well with the FE reference solution. Figure 6(c) shows the multi-stable nature of 
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many drape problems [9, 10, 15]. Instead of possessing four folds in Figure 6(a), the prediction in 

Figure 6(c) possesses eight folds and is obtained simply by doubling the multiplier  in the iterative 

solution scheme. 

 

          

 

 
(a) (c) 

 
(b) 

Figure 6.  A circular fabric sheet draped over a circular pedestal. (a) The top and isometric views predicted 

by using a 20×80 mesh; (b) the deformed boundary projected to X-Y plane. (c) the top and isometric views of 
another convergent predictions by using the 20×80 mesh. 

 

3.4  Large square fabric sheet draped over a circular pedestal 

In this example, a 50×50 cm square wool fabric sheet over a Ø20 cm circular pedestal is 

considered. The 30×240 mesh is employed to model the fabric and the results are depicted in Figure 

7. The draped shape is symmetric and possesses twelve folds which look realistic and conform to 

our daily perception. 
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Figure 7.  Predictions for a 50×50 cm square fabric sheet draped over a Ø20 cm pedestal. 

 

3.5  Large square fabric sheet draped over a square pedestal 

In this example, a 40×40 cm square wool fabric sheet over a 20×20 cm square pedestal is 

considered. 45×15×4 elements are employed and the results are shown in Figure 8. It can be seen 

that doubling the free-hanging length of the example in Section 3.2, the fabric drapes more 

thoroughly compared to Figure 5(b) and looks natural as well. 

 
 

Figure 8.  Predictions of a 40×40 cm square fabric sheet draped over a 20×20 cm square pedestal. 

 

 

4.  Dynamic Fabric Drape Simulation 

Dynamic analysis needs to take the inertial and damping forces into account. The equation of 

motion for finite element dynamic analysis can be expressed as: 

 
damp  MD F F P   (19) 

in which M, D , F
damp

, F, and P are the global mass matrix, the global acceleration vector, the 

global damping force vector, the global internal force vector and the global external force vector, 

respectively. By using the trapezoidal rule, the element and, thus, the global mass matrices are 

diagonal. On the other hand, the major damping in draping is probably the air resistance which 

increases with the velocity and the fabric area. It would there be sensible to adopt the popular mass 

Rayleigh damping, i.e. 

 
damp F MD   (20) 
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where  is the Rayleigh damping factor empirically set to be 5.0 sec
-1

 and D  is the global velocity 

vector. The central difference explicit time integration is employed [29]. At time t = tn = n Δt, the 

equation of motion is 

 
n n n n  MD MD F P   (21) 

By central difference,  

 1 1

1
,

2
n n n

t
  


D D D     1/2 1/2 1 12

1 1
2n n n n n n

t t
       

 
D D D D D D                (22) 

Substitution of Eq.(22) into Eq.(21) yields 

 1

1 12 2 2

1 2 1
( ) ( ) ( )

2 2
n n n n n

t t t t t

 

      
    

D M P F D D   (23) 

from which the displacement at t = tn+1, namely Dn+1, can be solved efficiently as M is diagonal. 

Solutions at subsequent time steps can be obtained recursively. In the following subsections, 

examples on dynamic drape simulations considered by using the quadrilateral solid-shell element 

are presented. 

 

4.1  Square fabric sheets hanged by two corners 

Dynamic draping of two square fabric sheets with dimensions 20×20 cm and 100×100 cm are 

considered. They are modelled by 40×40 and 50×50 elements, respectively. Initially, they are 

horizontal and stress-free. At t = 0, they are allowed to fall from rest under gravity with two 

adjacent corners fixed. The predictions of the smaller one at t = 0, 0.1, 0.4, 2.1 s are shown in 

Figure 9. At t = 2.1 s, it has almost stopped from moving and attained its steady-state configuration. 

The predictions of the larger one at time instant t = 0, 0.4, 1.4, 3.0 s are shown in Figure 10. At t = 

3.0 s, it has almost stopped from moving and attained its steady-state configuration. The 

intermediate and steady-state configurations of the two fabrics are compared. Firstly, the larger one 

drapes slower than the smaller one. For example, at t = 0.4 s, the free end of the former has already 

overshot its lowest position while that of the latter is still on its way. Secondly, the steady-state 

configuration of the larger fabric possesses more wrinkles than that of the smaller fabric. Both 

predictions appear to be realistic and conform to our daily perception. 
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(a) at time t = 0 s 

  
(b) at time t = 0.1 s 

  
(c) at time t = 0.4 s 

  
(d) at time t = 2.1 s 

Figure 9.  Dynamic draping process of a 20×20 cm square fabric sheet hanged by two corners. (a) to (d) 

are the isometric and side views at different time instants. 

 

 

4.2  Steady-state drapes by dynamic relaxation 

In this subsection, four drape examples are considered by dynamic relaxation which uses time 

integration to obtain the steady-state solution of the damped equation of motion in Eq.(19). The 

mass scaling technique, which aims at lengthening the critical time step size in the explicit time 

integration by scaling up the nodal mass, is employed and all nodal masses are increased by 100 

times while the weight appearing as the external force vector remains unchanged. 
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(a) at time t = 0 s 

 
 

(b) at time t = 0.4 s 

  
(c) at time t = 1.4 s 

  
(d) at time t = 3.0 s 

Figure 10.  Dynamic draping process of a 100×100 cm square fabric sheet hanged by two corners. (a) to 

(d) are the isometric and side views at different time instants. 

 

 

The first three examples have already been considered in Section 3 using static analysis. They 

are the 20×20 cm square fabric sheet draped over a 10×10 cm square pedestal, the 40×40 cm square 

fabric sheet draped over a 20×20 cm square pedestal and the 50×50 cm square fabric sheet draped 

over a Ø20 cm circular pedestal. Here, they are re-analyzed with the same meshes used in the static 

analysis. For both 20×20 cm and 40×40 cm fabrics problems, the steady-state drapes are highly 

similar to the static predictions and are not plotted again for saving space. For the 50×50 cm fabric, 

the steady-state configuration is shown in Figure 11(a) which shows ten folds. On the other hand, 

twelve folds are predicted in the static solution, see Figure 7. To further verify multi-stable draped 

patterns for this type of problem [9], the authors reduce the Rayleigh damping factor  in Eq.(20) to 



16 

 

1.0 s
-1

 and re-analyzes this problem with the same mesh. A different pattern with eight folds is 

predicted as shown in Figure 11(b). The predictions with eight, ten and twelve folds all appear to be 

realistic. 

  
(a) 

  
(b) 

Figure 11.  Steady-state shape of a 50×50 cm square fabric sheet draped over a Ø20 cm pedestal. (a) and (b) 

are the top and isometric views of two different steady-state patterns.   

 

 The fourth example considers a 30×30 cm square cloth draped over a Ø10 cm sphere in which 

the cloth-to-sphere contact is involved and treated by the penalty method [9]. A 60×60 mesh is used 

to model the cloth. Top and side views of the steady-state configuration are shown in Figure 12(a) 

and (b). Unrealistic sharp folds are noticed in the zoomed top view in Figure 12(c). 

   

(a) (b) (c) 

Figure 12.  (a) Top, (b) side and (c) zoomed top views of the steady-state shapes of a 30×30 cm square cloth 

draped on a Ø10 cm sphere predicted by dynamic relaxation using 60×60 elements. 
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4.3  Non-physical interpenetration 

The sharp fold observed in Figure 12(c) is further identified to be the interpenetration of top 

and bottom surfaces of solid-shell elements. This non-physical interpenetration has been reported in 

[13], see Figure 2. It is caused by zero force modes of the ANS solid-shell elements and the 

following quasi-engineering thickness strain at node p was proposed as a remedial measure [13]: 

  1 1           for ,

1 1       otherwise, 

np np T

np np p p

np

zz

np np

np np

np


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where np is the upward unit vector normal to the deformed element mid-surface and dp is the 

normalized deformed counterpart of Xnp, i.e. 
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( ) ( )
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X U
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where q = 1 + mod(p,4) and r = 1 + mod(p+2,4) define the two adjacent nodes of node p; μ is a 

positive scalar less than unity. Interpenetration occurs at node p when 
T

p pn d < 0. The above nodal 

thickness normal strains are then interpolated to get the element normal thickness strains. For 

T

p pn d < -, the quasi-engineering strain is the same as engineering strain. 

 
 

Figure 13.  The steady-state shapes of a 30×30 cm square cloth draped on a Ø10 cm sphere predicted by 

dynamic relaxation using 100×100 elements. 

 

The quasi-engineering strain is not always effective to alleviate the interpenetration problem. 

For instance, using 60×60 quadrilateral elements employing the strain to predict the 30×30 cm 

square cloth problem, unrealistic sharp folds due to interpenetration similar to those shown in 

Figure 12 exist. However, using 100×100 quadrilateral elements employing the Green thickness 

strain, the interpenetration and unrealistic sharp fold are not detected throughout the dynamic 

relaxation process. The steady-state configuration is shown in Figure 13 which is a bit unsymmetric. 

As the fabric drape simulation involves a large number of iterations or time steps, loss of symmetry 
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is well-expected and also observed in [9, 16]. In this light, reducing the element size or refining the 

mesh appears to be more effective in avoiding interpenetration. 

 

 

5.  Adaptive Mesh Subdivision 

Fine mesh is required to predict realistic wrinkles/folds which may not be captured by coarse 

meshes. It can also avoid the interpenetration. Nevertheless, a finer mesh usually brings forward 

higher computational cost and requires smaller critical time step. In solid-shell elements, the critical 

time step is controlled by the thickness stretching mode and, in general, is insensitive to the planar 

size of the element. To avoid the computational burden on using fine mesh in areas where 

wrinkles/folds are absent or mild, adaptive meshing has been popularly used in drape/cloth 

simulation which can broadly categorized into locally-based and globally-based. Most of them [8, 

30-32] belong to the locally-based adaptive meshing in which triangles/quadrilaterals are 

subdivided and consequently multi-level meshes are generated. In the globally-based approach, the 

mesh is re-generated and the nodal variables are obtained through projection [16]. By comparison, 

the locally-based approach is less computation consuming. Moreover, it causes far less oscillation 

in nonlinear and dynamic analyses. In this paper, a reversible local adaptive meshing method is 

developed for drape/cloth simulation in which 4-node quadrilateral and 3-node triangular solid-shell 

finite elements are employed. The subdivision process is a 1-4 splitting method [33] and the 

merging process is basically the reverse subdivision process. 

 

5.1  Background mesh 

In adaptive mesh subdivision, elements belonging to different subdivision level are co-used, 

see Figure 14(a). To keep track of the nodes and elements, a background mesh is employed. In the 

user-input mesh or Level 0 mesh, see Figure 14(b), each element is split into 4
n
 child elements by 

performing the 1-4 splitting n times and the finest or background mesh is obtained, see Figure 14(c) 

for n = 3. In each splitting operation, four mid-edge and one center nodes will be inserted to an 

existing  quadrilateral to make up the correct number of nodes needed by the subdivision. While Xo 

and Xn of the mid-edge nodes are obtained by simple averaging, those of the center node are 

obtained by using the interpolation functions of the 8-node serendipity element. All Xo and Xn of 

the nodes in the background mesh are numbered sequentially and stored. A 1D array is declared to 

indicate whether the nodes are active after each subdivision/merging. 

To build the connections between nodes and elements in different levels, the element labeling 

scheme to be described are adopted. In Figure 15(a), nodes 1 to 4 taken anti-clockwisely define 

element i0 in Level 0. When it is split, its Level 1 child elements include elements i0-1 to i0-4 taken 
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anti-clockwisely and the first node of element i0 is also the first node of element i0-1. Following the 

same scheme, the elements outlined by the thickened lines in Figure 15(b) and (c) should be 

labelled as i0-3-1 and i0-4-2-3, respectively. The connectivity of all elements in the background 

mesh is stored. In this way, the connectivity of the elements at different levels can be deduced 

according to its label and the connectivity of elements in the background mesh.  

 

  
(a) (b) (c) 

Figure 14.  (a) The multilevel mesh; (b) and (c) are the Level 0 and Level III meshes of the mesh in (a), 
respectively. 

 

 

   

(a) (b) (c) 

Figure 15.  (a) The Level I elements i0-1 to i0-4; (b) The Level II element outlined by the thickened lines is 
i0-3-1; (c) The Level III element outlined by the thickened lines is i0-4-2-3. 

 

5.2  Mesh adaptive criteria 

In the adaptive drape/cloth simulation, curvature/curvature-based parameters popularly serve 

as the adaptive criteria. Here, an element in Level i is subdivided if 

 b iL const ε   (25) 

in which Li is the average element side length, and const is a preset positive dimensionless 

coefficient. It can be noted in Eq.(6) that the dimension of b is 1/length and is a measure of the 

curvature. Similar refinement criteria are also used in [31, 32]. 

During the deformation process, a curved fabric area may be flattened. In this light, the child 

elements at Level i from the same parent element at Level i-1 is merged if all the child elements 

satisfy the condition 
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 1b iL const  ε   (26) 

where  is another preset positive dimensionless coefficient less than const.  

The criteria in Eqs.(25)-(26) also define the admissible ranges of ||b|| for elements at different 

levels. It should be also noted that the condition in Eq.(25) is sufficient but not necessary for 

splitting while that in Eq.(26) is necessary but not sufficient for merging. Considerations to be 

elaborated in the following section must be taken for ensuring the mesh conformity. 

 

5.3  Macro-transition elements 

A major issue for most, if not all, local adaptive meshing schemes is interfacing the elements at 

different levels with the required displacement continuity maintained. To reduce the redundancy in 

the data structure and avoid excessive dynamic oscillation of the nodal variable, the subdivision and 

merging processes are not allowed to create adjacent elements with their levels differ by more than 

1. To avoid gaps occurring in the common edge of two adjacent elements at different levels, 

measures in literature include constructing macro-transition elements with triangular elements [33], 

constraining the newly inserted mid-edge node to the common edge [8] and using 5- to 7-node 

transition quadrilateral elements [34]. Figure 16(a) shows the macro-transition elements composed 

of triangles given in [33] for different combinations of mid-edge nodes along the boundary. The 3-

node triangular solid-shell elements befit these macro-transition elements. However, some of the 

employed triangles have poor mesh quality. Moreover, the 3-node triangular solid-shell elements 

still have moderate possibility of shear-locked even after the ANS method has been adopted [21].  

 

 

(a) 

 

(b) 

Figure 16.  (a) The macro-transition elements in [33]; (b) the hybrid macro-transition elements used here.   

 

 

(4 cases) (4 cases) (2 cases) (4 cases) 

(4 cases) (4 cases) (2 cases) (4 cases) 
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In this work, hybrid macro-transition elements formed by 3-node triangles and 4-node 

quadrilaterals shown in Figure 16(b) are employed. It can be seen that the use of triangles is 

minimal and all elements possess reasonable mesh quality. The macro-transition elements 

interfacing the Level i and Level i+1 elements will be marked as Level i+1/2. 

 

5.4  Interpolation of nodal variables 

In each 1-4 splitting, the newly inserted nodes are mid-edge and center nodes. The initial 

positions of the newly inserted nodes have been readily provided in the background mesh. For the 

kinematic variables of a newly inserted mid-edge node, the linear interpolation of displacements is 

often used which, however, causes considerable oscillation in the dynamic system. Here, a novel 

interpolation method based on the discrete Kirchhoff (DK) assumption [26, 27] is used to obtain the 

kinematic variables of newly inserted mid-edge nodes. A very brief introduction on the DK 

condition is here illustrated by using the 4-node quadrilateral DK plate element in Figure 17. In the 

element, the mid-plane is defined by z = 0 whilst the inplane displacements are given by u = zx and 

v = zy. The following describes how (x,y) at the fictitious mid-edge node, node 5, bounded by 

nodes 1 and 2 are defined by using the DK condition. The following Kirchhoff conditions are 

imposed at the discrete points:  

, 0x xw    and , 0y yw      at nodes 1 and 2,       (27) 

, 0s sw      at node 5           (28) 

where s is the running coordinate from node 1 to node 2. From Eq.(27), the rotations (n,s) at 

nodes 1 and 2 about the tangential and normal directions, respectively, can be obtained by 

transformation. Hence, w,s at nodes 1 and 2 would be available. The thin beam interpolation can be 

constructed based on the w and w,s at nodes 1 and 2. At node 5, one can obtain from the thin beam 

interpolation and Eq.(28) that  

 
node 5 node 5 node 1 node 2 node 1 node 2

12

3 1
, ( ) ( , , )

2 4
s s s sw w w w w

L
         (29) 

in which L12 is the distance from node 1 to node 2. On the other hand, βn at node 5 is taken to be the 

average of those at nodes 1 and 2. Finally, (x,y) at node 5 can be obtained from (n,s) at the same 

node.  

As the first and second nodal dofs in Un of the solid-shell elements are respectively analogous 

to the rotational dofs βx and βy of the DK element, the above DK conditions are here extended to 

obtain the variables of the new inserted mid-edge node. Note worthily, the above DK conditions are 

based on the linear strain-displacement relationship. To consider the geometric nonlinearity, the co-
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rotational framework [29] is adopted. Consider the edge of a 4-node quadrilateral solid-shell 

element in Figure 18 with nodes A and B being the corner nodes whilst node M being the newly 

inserted mid-edge node. Node E is another corner node to define the initial mid-plane EAB. (XoA, 

XoB, XoM, XoE), (XnA, XnB, XnM, XnE) and (UA, UB, UM, UE) are respectively the initial position 

vectors, the initial directors and displacement vectors of A, B, M and E. After deformation, the 

nodes are at A’, B’, M’ and E’ whilst xnA, xnB, and xnM are the nodal directors. The co-rotated x’-y’-

z’ frame is defined with its origin at A’; its y’-axis passing thru A’B’; and E’ on the x’-y’-plane. The 

co-rotational configuration of the edge A’-M
c
-B

c
 obtained by rigid body motion from A-M-B is 

shown in the figure. 

 

  
Figure 17.  The 4-node quadrilateral DK element. 

 
 

 
Figure 18.  The initial, co-rotational and deformed configurations of an edge of the 4-node quadrilateral 

solid-shell element. 

 

For small strain, the difference between A’-M
c
-B

c
 and A’-M’-B’ is small. From A’ to A’, 

A

l

ou = 0 whilst the components of A

l

nu  along the x’-, y’- and z’- axes are: 

 A ' A A A ' A A A ' A A( ),  ( ),  ( ) 1T T T

n x n n n y n n n z n nu v w      n X U n X U n X U   (30)   

in which nx’, ny’ and nz’ are the unit vectors along the local x’-, y’- and z’-axes, respectively. 

Similarly, from B
c
 to B’, 
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Using the DK conditions in Eqs.(27)-(29), the components of 
M

l
u  from M

c
 to M’ along the local x’-, 

y’- and z’-axis can be derived to be 
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  (32) 

where LAB is the initial length of the edge AB. Then, the global displacement of node M can be 

expressed as 

 
M M M

c l U U u   (33) 

in which 
M

c
U  is the displacement vector from M to M

c
 and is given as 

 AB
M A ' M A M M M( )  and  .

2

c c c

o o y o o n n n

L
     U U n X X U x X   (34) 

Similar approach is used to get the velocity of the mid-edge node M.  

      If there is a newly inserted center node, displacements and velocities of all the mid-edge nodes 

regardless whether they need to be inserted or not are first derived. Those of the center node are 

then obtained from the corner and mid-edge nodes by using interpolation functions of the 8-node 

serendipity element. 

 

5.5  Adaptive meshing procedure  

With the key issues in the reversible adaptive procedure discussed in the last subsections, the 

procedure is summarized below: 

a.  The background mesh is generated from the user-input Level 0 mesh; the initial nodal 

positions and directors as well as the element connectivity are generated and stored 

according to the element labels in the background mesh. 

b.  The Level 0 mesh is firstly invoked by switching on the nodes of Level 0 elements. 

c.  The simulation is advanced for a prescribed number of integration time increments. 

d.  In the current mesh, flag all the elements ‘0’, calculate the bending strain for all elements, 

change the element flag to ‘+1’ if the strain satisfies the subdivision criterion or ‘-1’ if the 

strain satisfies the merging criterion. 
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e.  Implement both subdivision and merging operations on the current mesh. During the 

adaptive meshing process, the removed nodes are switched off and the newly inserted nodes 

are switched on. The kinematic variables of these newly inserted nodes are obtained through 

the DK condition discussed in Section 5.4.  

f.  Update the global nodal mass matrix according to the new-generated mesh. 

g.  Go to step c. 

 

 

6.  Dynamic Drape Examples Using Adaptive Mesh Generation 

In Section 4, the four fabric drape examples considered by dynamic relaxation need relatively dense 

meshes to avoid interpenetration and obtain realistic predictions. Here, they will be re-analyzed by 

using the adaptive mesh generation.  

 

6.1 Square fabric sheet draped over a square pedestal 

For the 20×20 cm square fabric sheet draped over a 10×10 cm square pedestal, the adaptive 

mesh and deformed configurations at different time instants are shown in Figure 19. The Figure 

19(a) depicts the Level 0 mesh which employs 48 quadrilaterals. It can be seen from Figure 19(b) 

that the mesh refinement is firstly activated along the weft direction due to the smaller bending 

rigidity. As the fabric drapes, the mesh is self-adaptive to the curvature distribution and dense 

meshes can be seen at areas with wrinkles and folds, see Figure 19(c). Figure 19(d) depicts the 

steady-state configuration which is highly similar to that predicted by the 48×16×4 uniform mesh in 

Figure 5(b). Nevertheless, it is noteworthy that the maximum number of switched-on nodes in the 

present adaptive mesh is only half of that in the 48×16×4 uniform mesh. 

 

6.2 Large square fabric sheet draped over a square pedestal 

For the 40×40 cm square fabric sheet draped over a 20×20 cm square pedestal, the adaptive 

mesh and deformed configuration at different instants are shown in Figure 20. Figure 20(a) shows 

the Level 0 mesh which employs 48 quadrilaterals. As the fabric starts to drape under gravity, the 

meshes at the four corners become denser than other areas, see Figure 20(b) and (c). Figure 20(d) 

shows the steady-state shape of the fabric sheet and it looks similar to the prediction in Figure 8 

which is obtained by using 45×15×4 uniform mesh. Again, the maximum number of switched-on 

nodes in the adaptive mesh is far less than that in the uniform mesh.  
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

Figure 19.  A 20×20 cm square fabric sheet draped over a 10×10 cm square pedestal. (a) to (d) are isometric 

and top views of the mesh in the dynamic process. 

 

6.3 Large square fabric sheet draped over a circular pedestal 

For the 50×50cm square fabric sheet draped over a Ø20cm pedestal, the adaptive meshes and 

deformed shapes at different time instants are shown in Figure 21. Figure 21(a) shows the Level 0 

mesh which employs 4×32 quadrilaterals. As the fabric sheet drapes, the mesh around eight radii 

becomes denser than other areas as shown in Figure 21(b) and (c). Eight folds are formed in the 

steady-state configuration given in Figure 21(d). It can be noted that the present steady-state pattern 

is different from that in Figure 11(b) though both of them possess eight folds, which again reflects 

the multi-stable drape patterns. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

Figure 20.  A 40×40 cm square fabric sheet draped over a 20×20 cm square pedestal. (a) to (d) are isometric 
and top views of the mesh in the dynamic process.  

 

6.4 Square cloth draped over a sphere 

For the 30×30 cm square cloth draped on a Ø10 cm sphere, the adaptive meshes and deformed 

shapes at different time instants are shown in Figure 22. The Level 0 mesh in Figure 22(a) contains 

16×16 quadrilaterals. As the cloth drapes over the sphere, both the adaptive meshing and the cloth-

to-sphere contact are activated. The mesh density along the X- and Y-axes is distinctively higher due 

to fold development, see Figures 22(b) and 22(c). Figure 22(d) shows the steady-state configuration 

of the cloth which looks highly similar to that predicted by 100×100 uniform mesh in Figure 13. 

The maximum number of switched-on nodes in the adaptive mesh is only about half of that in the 

100×100 uniform mesh, however, unrealistic sharp fold or interpenetration appeared in Figure 12(c) 

is no more detected throughout the dynamic process. 
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(a) 

 

 
(b) 

  
(c) 

  
(d) 

Figure 21.  A 50×50 cm square fabric sheet draped over a Ø20 cm pedestal. (a) to (d) are isometric and top 

views of the mesh in the dynamic process.  

 

 

7.  Closure 

In this paper, the solid-shell finite element method is applied in both static and dynamic fabric drape 

simulation. Both 4-node quadrilateral and 3-node triangular solid-shell elements are used. In their 

geometric nonlinear formulations, transverse shear and trapezoidal lockings are subdued by the 

ANS method and the thickness locking is overcome by plane-stress enforcement. Static and 

dynamic drape examples are examined by using the 4-node solid-shell element and predictions look 

realistic if the drape is shallow. When the drape is deep or the mesh density is not adequate, the 

non-physical interpenetration appears and produces unrealistic sharp fold. To circumvent the 

interpenetration, a local adaptive mesh generation technique based on the 1-4 splitting method is 



28 

 

developed. To link elements at different subdivision levels, macro-transition elements composed of 

quadrilateral and triangular elements are employed. Meanwhile, the DK condition is generalized to 

obtain the kinematic variables of the newly inserted mid-edge nodes during each remeshing process. 

The assumption is effective in reducing the out-of-balance forces and, thus, the dynamic oscillation. 

Examples involving deep folds and/or interpenetrations are repeated. The adaptive meshing is 

effective in producing realistic predictions by effectively capturing wrinkles/folds of the fabric and 

avoiding the interpenetration problem. 

 

 

 
(a) 

 

 
(b) 

  
(c) 

  
(d) 

Figure 22.  A 30×30 cm square cloth draped on a Ø10 cm sphere. (a) to (d) are isometric and top views of 
the mesh in the dynamic process. 
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