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Abstract 

In the present study, a finite element scheme with random distribution strategy is 

employed to systematically investigate the modulus difference of polycrystalline 

copper aggregates in different geometrical configurations (three-dimensional bulk and 

thin film configurations).  Firstly, the finite element simulation is performed to 

estimate the effective elastic constants in three-dimensional bulk configuration. The 

numerical estimations are in good agreement with the existing analytical solutions and 

experimental measurements.  Secondly, the proven finite element scheme is 

extended to the prediction of the effective moduli of the free-standing and 

substrate-attached thin films.  For the free-standing thin film, the effective Young’s 

modulus decreases with reducing the film thickness.  For the substrate-attached thin 

film, its effective modulus is affected by the relative stiffness between the substrate and 

the film.  The spread of the effective moduli in different configurations could be as 

large as 20%. 

 

Keywords: effective modulus, finite element analysis, thin film, polycrystalline 

material, statistics. 

* Corresponding author: Tel: (65) 6790-6551; Fax: 6791-1859.       

 Email address: XIEX0006@ntu.edu.sg (X.M. Xie). 

Published in: Materials Science and Engineering A: Structural Materials: Properties, 

Microstructures and Processing, 527(18-19), 5008-5017, 2010 



2 

 

1. Introduction 

Polycrystalline thin films have been broadly used in microelectronic and 

micro-electro-mechanical system (MEMS) devices.  In order to ensure the reliability 

and improve the performance of these devices, it is of paramount significance to 

understand the mechanical properties of the thin films.  It has been noticed that the 

mechanical properties of thin films are often different from those of the corresponding 

bulk materials [1-4].  

On the one hand, numerous investigators made efforts in measuring the mechanical 

properties of thin films [5].  There are two common configurations in the tests, namely, 

the free-standing thin films [6-8] and the substrate-attached thin films [2, 9-11]. 

Volinsky and co-workers [12] reported that the elastic moduli of the polycrystalline 

copper in different geometrical configurations may deviate as much as 20% to 30%. 

Huang and Spaepen [7] found that the elastic moduli of various free-standing metal 

films and multi-layers (e.g., Ag, Cu and Ag/Cu multi-layers) measured by micro-tensile 

testing method are about 20% below the values in the bulk configurations.  However, 

some investigators claimed that there is no modulus difference between the 

free-standing thin films and the corresponding bulk materials [8, 13-14].  Furthermore, 

Saha and Nix [9] focused on the influence of the substrate on the mechanical properties 

of the substrate-attached thin films by using nano-indentation.  Yu and Spaepen [11] 

revealed that a polyimide (Kapton) substrate-attached copper thin film exhibited lower 

Young’s modulus in comparison with its bulk value.  

On the other hand, from the theoretical side, various finite element analyses were 

conducted to estimate the mechanical properties of the thin films [15-20].  den 

Tooder et al. [16] and Choi [18] established the Voronoi cells to study the effective 

constants in plane stress and plane strain state, respectively.  Zhang and Sun [20] 

developed a multi-scale scheme to study the mechanical properties of textured 

polycrystalline nano-films in plane stress state.  However, for the substrate-attached 

thin film, numerical simulation is rarely found in the open literatures. 
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Furthermore, a number of analytical models for predicting the effective constants 

of polycrystalline aggregates were proposed.  The well-known theoretical methods 

include bounds method [21-24], Hill’s average [21] and self-consistent scheme 

[25-28]. Two remarkable pairs of bounds, Voigt-Reuss bounds [21] and 

Hashin-Shtrikman bounds [22], have been often taken as benchmark for the predicted 

effective constants.  Hill’s average, regarded as a good approximation for the 

effective moduli of polycrystalline aggregates by Hill [21], refers to the arithmetic or 

geometrical mean of Voigt upper and Reuss lower bounds.  Although many 

complicate theoretical models were developed later, the Hill’s average is preferred by 

many researchers due to its easy calculation and accuracy [29-30].  Morris [26] 

showed that there is only a couple of percents difference between Hill’s average and 

prediction made by self-consistent scheme.  It should be mentioned that most of the 

analytical models were derived for the three-dimensional bulk configuration.  They 

may not suitable for the thin film configurations. 

The present study is aimed to systematically investigate the modulus difference 

for polycrystalline aggregates in different geometrical configurations, including 

three-dimensional bulk configuration, the free-standing thin film and the 

substrate-attached thin film, within the scope of continuum linear elastic theory.  The 

inspiration stems from Hill’s contribution [21].  Voigt model assumed uniform strain 

in all the grains, which can be imagined as a parallel connection of the grains; while 

Reuss model assumed uniform stress in all the grains, which can be imagined as a series 

connection of all the grains.  It is obvious that the three-dimensional configuration is 

the situation between Voigt model and Reuss model.  Hill [21] made average on 

Voigt and Reuss models, which provided a good approximation for the effective 

constants of polycrystalline materials.  In the case of the free-standing thin film, grains 

subject to less constraint from the neighboring grains in comparison with the grains in 

the bulk configuration.  Hence, the effective modulus of the free-standing thin film 

may fall inside the region between the lower bound and the equivalent value of the 

three-dimensional bulk material.  For the substrate-attached thin film, the grains are 
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forced to deform together with the substrate.  This constraint is more or less similar to 

Voigt’s assumption.  We foresee that the effective modulus of the substrate-attached 

thin film may fall inside the range between the three-dimensional bulk value and the 

upper bound. 

The topic of using numerical techniques to look into the mechanical behaviors of 

polycrystalline aggregates has always been the interest of many investigators.  Most 

of time numerical simulations for polycrystalline materials were performed via finite 

element models in which the morphological and crystallographic characteristics of 

microstructure was emphasized [32-36].  Kumar [32] adopted Voronoi tessellation in 

modeling a unit cube of polycrystalline solid and estimated the effective moduli.  

Barbe and co-colleagues [33, 34] simulated the polycrystalline aggregates by 

three-dimensional Voronoi cells to study their elastoplastic behaviors.  Bhandari et al. 

[36] reconstructed the three-dimensional microstructure by using the crystallographic 

orientation maps of consecutive serial sections.  In the present paper, we do not 

attempt to establish a finite element model which reflects the real microstructure of 

polycrystalline aggregates.  Rather, a simple finite element scheme with a statistical 

consideration is proposed to predict the effective elastic constants of polycrystalline 

materials in different configurations.  The accuracy and feasibility of such scheme 

will be verified by comparing the numerical results with the existing analytical 

solutions for the polycrystalline aggregates in the three-dimensional bulk 

configuration.  

In the following sections, a finite element simulation based on a commercial 

software package ANSYS [31] is conducted.  Section 2 outlines the framework of 

the proposed finite element scheme.  In Section 3, this scheme is carried out for 

simulating polycrystalline copper material in three-dimensional bulk configuration. 

Verification is discussed by comparing the numerical results with analytical solutions. 

Section 4 investigates the effective Young’s modulus of copper thin films, i.e., the 

free-standing thin film and the substrate-attached thin film.   
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2. Finite element scheme and statistical consideration 

Since our primary interest is to study the effective modulus difference of the 

polycrystalline materials in the three-dimensional bulk configuration and the thin film 

configurations, the actual morphology of polycrystalline aggregates, such as variation 

of the grain shape and size, will not be modeled into details in order to simplify our 

simulation procedures.  We focus on the random distribution of crystallographic 

orientation of the grains, while the grain size is treated as a characteristic dimension 

of the microstructure and assumed to be constant, and all the grains aggregating the 

polycrystalline material have the identical shape.  It will be shown that numerical 

results with these simplifications are in good agreement with existing analytical 

prediction (Hill’s average). 

 

2.1 Finite element scheme with random distribution of grain orientations 

In our numerical simulation, a prism specimen with macroscopic dimension 

a b c  is used to model a polycrystalline aggregate, shown in Fig.1.  The edges are 

parallel to the global coordinate axes. 

As the first step, the specimen is discretized into N elements.  Each element is 

considered as one grain.  For a polycrystalline aggregate, each of the grains has 

random crystallographic orientation with respect to the global coordinate system. This 

implies that each grain possesses different material identity.  Therefore, we need to 

generate N orientations for the N grains.  Here, one grain orientation is defined by 
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one set of Euler angles (α, β, γ).  Considering the random distribution orientation of 

each grain in the specimen, we create N-sets of Euler angles in which each set is 

chosen randomly in α-β-γ space with uniform distribution.  Taking advantage of 

tensorial transformation (see Appendix A), N-sets of elastic constants can be 

calculated based on N-sets of Euler angles.  Each set of the elastic constants is 

related to a unique material identity. These N-sets of the elastic constants are then 

input into the material sheets in the FEM package and N types of materials are 

generated. 

 

Fig. 2 shows the elements and grains in the specimen.  The specimen is 

discretized by using the ten-node tetrahedral shape element type so that the shape of 

the grain is tetrahedron.  Fig. 2 (a) depicts the specimen meshed into 7569 elements 

with identical material type.  The constructed model for polycrystalline specimen 

consisting of 7569 grains with randomly assigned crystallographic orientation is 

presented in Fig. 2 (b).  Different grey-levels represent the grains with various grains 

orientations.  
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So far, each of the grains is modeled by only one element.  Due to mismatched 

material properties among the grains, a large numerical error is expected if there is 

only one element in each grain.  Therefore, a process of mesh refinement, which 

subdivides each grain into more elements, is needed. The mesh refinement not only 

gives the relaxation of stress concentration, but also smoothes the displacement 

variation between the grains with different material properties.  Besides, the higher 

order element type is also adopted to improve the accuracy and accelerate the speed of 

convergence. 

2.2 Statistics consideration 

In the numerical simulation of the polycrystalline aggregates, our computational 

power is limited.  The concept of statistics is therefore adopted.  In the present 

work, the “population” refers to the specimen with a given number of the grains.  

For each “population”, a sample consisting of thirty different finite element models is 

used to infer the effective elastic constants of the population.  Because the 

crystallographic orientation for each grain in the finite element model is randomly 

assigned, thirty different predictions for the effective elastic constants are obtained. 

Two important statistical data, namely the sample mean value (μ) and the sample 

standard deviation (s), for the effective elastic constants are achieved.  According to 

Central Limit Theorem in statistics [37], the effective elastic constants for the 

specimen should be within the interval  

                           
n

s
96.1                            (1) 

with 95% confidence.  The symbol n is the sample size and equal to 30 in our work. 

Apparently, the interval can be narrowed by either decreasing the sample standard 

deviation or increasing the sample size.  Keeping the statistical consideration in 

mind, we may achieve reliable accuracy for the predicted values by using the 

specimen with limited grain number and limited sample size. 
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3. Simulation on three-dimensional bulk configuration 

For illustration, polycrystalline copper material is taken as an example here for 

estimating the effective elastic constants in different geometrical configurations via 

the proposed finite element scheme.  The elastic properties for the single crystal 

copper are given in Table 1. 

 

Table 1 Elastic constants for polycrystalline copper material. The anisotropic ratio is defined 

as 44 11 12 11 12 442 /( ) 2( ) /AR C C C S S S    . 

Material type 
C11 

(GPa) 

C 44 

(GPa) 

C 12 

(GPa) 

10
3
 S11 

(GPa)
-1

 

10
3
 S44 

(GPa)
-1

 

10
3
 S12 

(GPa)
-1

 

Anisotropic 

ratio 

Copper 168.4 75.4 121.4 15.00 13.26 -6.28 3.21 

 

As discussed in the previous section, a prism specimen is used to model 

polycrystalline aggregates in bulk configuration.  Since the grain size is a 

characteristic dimension with constant value, it is easy to construct specimen with 

diverse number of the grains through changing the specimen’s dimensions a, b and c. 

The ten-node tetrahedral shape element is employed to discretize the specimen.  

Each of the grains is randomly assigned one crystallographic orientation.  At this 

stage, each grain is modeled by only one element so that the above mesh setup is 

termed as the zero-th level of mesh refinement (R0).  To reduce the computational 

error, the first (R1), second (R2), third (R3) and fourth (R4) levels of mesh refinement 

are also performed in which each grain is subdivided into 2
3
 (=8), 3

3
 (=27), 4

3
 (=64) 

and 8
3
 (=512) elements, respectively.  

 

3.1 Boundary and loading conditions 

To deform the specimen, the following boundary and loading conditions are 

imposed. 

                  0xu            at 0x                          (2a) 

                  xu             at x a                        (2b) 
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0yu ,            along 0, 0x y                  (2c) 

                  0zu ,          along 0, 0x z                  (2d) 

where  is the prescribed displacement.  The symbols, xu , yu and zu , denote the 

displacement along the directions x, y and z in the global coordinate system respectively. 

In addition to the aforementioned boundary conditions, the non-specified boundary 

conditions are in “traction-free” condition. 

Based on the principle of energy balance, the effective Young’s modulus can be 

calculated by  

2

2aU
E

A



                                (3) 

where a is the length of edge along the x direction, illustrated in Fig. 1; A is the cross 

sectional area of the plane perpendicular to axis x; U is the total strain energy collected 

from all the elements in the specimen. 

For the Poisson’s ratio, we have  

[ ( ) ( 0)]/

/

y y y

xy

x

u y b u y b
v

a





  
   


                  (4) 

[ ( ) ( 0)]/

/

z z z
xz

x

u z c u z c
v

a





  
   


                   (5) 

where ( )yu y b and ( 0)yu y  are the averaged nodal displacement in the y direction 

over the specified surfaces y b  and 0y   of the specimen, respectively, 

( )zu z c and ( 0)zu z  are the averaged nodal displacement in the z direction over the 

specified surfaces z c  and 0z   of the specimen,  respectively. 
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Table 2 Summary of finite element simulation for copper bulk material. The statistic mean value 

and standard deviation (S.D.) for each specimen at each level of mesh refinement are obtained 

from a sample size of n = 30.  

Specimen 

size 

Element 

shape 

Number 

of 

grains 

Refine- 

ment 

level 

Number 

of 

elements 

Number 

of 

nodes 

Effective 

Young’s 

modulus (GPa) 

Effective Poisson’s ratio 

vxy vxz 

Mean S.D. Mean S.D. Mean S.D. 

1×1×1 
Tetrahedron 

(Solid187) 
7569 

R0  7569 11554 135.48 0.182 0.3356 0.001 0.3353 0.001 

R1  60539 86310 131.09 0.182 0.3409 0.001 0.3406 0.001 

            

1×1×0.5 
Tetrahedron 

(Solid187) 
4140 

R0  4140 6533 135.12 0.422 0.3355 0.002 0.3361 0.002 

R1  33106 48019 130.73 0.404 0.3406 0.002 0.3415 0.002 

R2  111750 157591 129.43 0.422 0.3421 0.002 0.3431 0.002 

            

0.5×0.5×0.5 
Tetrahedron 

(Solid187) 
809 

R0  809 1464 134.67 1.014 0.3374 0.006 0.3365 0.005 

R1  6469 10092 130.50 1.002 0.3425 0.006 0.3411 0.005 

R2  21829 32352 129.14 1.018 0.3439 0.006 0.3427 0.005 

R3  51722 74695 128.64 1.025 0.3445 0.006 0.3432 0.005 

            

0.3×0.3×0.3 
Tetrahedron 

(Solid187) 
342 

R0  342 634 134.39 1.701 0.3400 0.009 0.3340 0.009 

R1  2370 4305 130.12 1.637 0.3445 0.009 0.3394 0.009 

R2  9225 13759 128.82 1.684 0.3461 0.009 0.3407 0.009 

R3  21852 31705 128.31 1.701 0.3467 0.009 0.3412 0.009 

R4  174825 243234 127.63 1.693 0.3474 0.009 0.3420 0.009 

            

0.9×0.9×0.9 
Hexahedron  

(Solid186) 
729 

R0  729 3700 129.1 0.994 0.3447 0.005 0.3439 0.006 

R1  5832 26353 127.46 0.999 0.3460 0.005 0.3449 0.006 

R2  19683 85456 127.14 1.000 0.3463 0.005 0.3451 0.005 
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3.2 Numerical results and discussion 

The numerical simulation is carried out for each specimen in different levels of 

mesh refinement with sample size n=30.  The raw data are summarized in Table 2.  

Fig. 3 shows the scatter of the effective Young’s modulus of the copper bulk material 

versus the number of the grains in the zero-th and the first levels of mesh refinement, 

respectively.  Also included in the figure is Voigt-Reuss bounds and Hill’s average 

for comparison (see Appendix B).  It is seen that the mean value of the effective 

Young’s modulus varies slightly when the number of the grains increases from 342 

(specimen with dimension 0.3×0.3×0.3) to 7569 (specimen with dimension 1×1×1), 

whereas the corresponding standard deviation decreases dramatically. All the 

numerical predictions fall in between the lower and upper bounds. 

Due to the limitation of our computer power and time cost, larger number of the 

grains and higher level of mesh refinement cannot be adopted simultaneously.  To 

explore the trend of increasing the mesh refinement level, the specimen with 342 

grains is analyzed at different mesh levels.  Fig. 4 gives the mean value and variance 

of the effective stiffness from the zero-th (R0) to the fourth (R4) level of mesh 

refinement.  It shows that the effective Young’s modulus reduces and approaches to 

the Hill’s average value with increasing the mesh refinement level. 
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Based on these numerical insights, two trends can be identified clearly.  First, it 

is seen that the larger the number of the grains is, the lower the standard deviation is. 

Second, the higher the level of mesh refinement or the larger the number of the 

elements in one grain is, the lower the mean value of the effective stiffness is.  The 

first trend is in agreement with statistics in common sense.  The second trend is in 

line with the finite element theory for the displacement-based formation.  Comparing 

the predicted value in the second mesh level with that obtained in the fourth level of 

mesh refinement, there is only 1% difference of the effective stiffness at the cost of 

20-fold increase of the total number of elements.  Hence, in combination with 

statistical consideration, we have confidence that the present numerical simulation 

with limited number of grains (below 1000 grains) and elements (in the second mesh 

refinement level, R2) can achieve reliable accuracy. 

So far, the shape of the grains aggregating the specimen is tetrahedral.  To shed 

some light on the influence of the grain shape on the effective elastic constants, 

another grain shape, namely cube or hexahedron, is used.  A specimen with 729 

hexahedron-shaped grains is constructed, as shown in Fig. 5.  Each of the grains has 

randomly assigned crystallographic orientation and contains only one element. 

Twenty-node hexahedral type element is chosen to discretize the specimen.  The 

corresponding numerical results are listed in the Table 2.  In comparison with the 

corresponding results for the specimen made up of comparable number of 

tetrahedron-shaped grains, less than one percent discrepancy is observed.  It 

indicates that the grain shape affects the predicted effective stiffness slightly.  

Similar feature was reported by Kumar [32] and Nozaki and Taya [38]. 
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Table 3 The prediction value of the effective elastic Young’s modulus and Poisson’s ratio for 

polycrystalline copper aggregate by using different methods. 

Approach 
Effective Young’s 

modulus (GPa) 
Poisson’s ratio 

Experimental value [39]  125-135 0.34-0.35 

Hill’s average [21] 127.36 0.345 

Reuss lower bound [21] 109.44  

Voigt upper bound [21] 144.69  

Finite element simulation 127.14 0.346 

 

 

To verify the accuracy and feasibility of our finite element analysis, existing 

analytical solutions and experimental data are given in Table 3.  It is noticed that the 

present finite element simulation provides accurate estimation for the polycrystalline 

copper aggregate.  Moreover, the predicted value falls in between the lower and 

upper bounds.  Hence, we are confident that the present finite element scheme can 

provide accurate effective elastic constants for the polycrystalline aggregates.  In the 

next section, the verified finite element scheme is used to simulate the free-standing 

thin film and the substrate-attached thin film. 

To make the numerical data complete, the statistical data for the predicted 

Poisson’s ratio are also included in Table 2. 
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4. Simulation on thin film configurations 

The geometrical parameters of a thin film are illustrated schematically in Fig. 6 

for its micro-structural and macro-structural dimensions.  The parameter ‘d’, which is 

taken as the basic dimension, is the in-plane dimension of a grain.  ‘t’ represents the 

thickness of the thin film, and ‘L’ is the macroscopic dimension of the thin film in x-y 

plane.  From now on, all the geometrical parameters except the grain size, i.e., t, L and 

h (the thickness of the substrate used in the next section), are normalized by the grain 

size as t/d, L/d and h/d , respectively.  The significant feature of the thin film’s 

microstructure is that each of the grains “penetrating thru” the film thickness direction.  

In other words, the thin film has columnar grain structure.  In our terminology, the 

“thin” film is defined by the dimensionless ratio ‘t/d’, rather by the absolute value of the 

thickness.   

 

4.1 Simulation on free-standing thin film 

The loading and boundary conditions are imposed as follows. 

   0xu        at 0x                            (6a) 

             xu         at x L                           (6b) 

     0yu  ,      along 0, 0x y                    (6c) 

           0zu ,     along 0, 0x z                    (6d) 

where  is prescribed. The non-specified boundary conditions are traction free. The 

effective Young’s modulus of the free-standing thin film can be extracted from the 

finite element numerical data as 

2

2LU
E

A



                             (7) 

 

where A is the cross sectional area of the specimen at x = L and U  is the total strain 

energy collected from all the grains of the thin film.   
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4.1.1 Sensitivity of the effective Young’s modulus to the film thickness 

The specimen with different ratio between the film thickness (t) and the grain size 

(d) is constructed.  The ratio, t/d, takes the value from 0.1 to 1.  Each specimen 

consists of 900 cubic grains with randomly assigned crystallographic orientation.  In 

our simulations, the three-dimensional twenty-node hexahedral type element is used. 

Thirty numerical simulations are carried out for the specimen with given ratio ‘t/d’.  

Fig. 7 plots the mean value and dispersion of the effective stiffness for copper 

free-standing thin film in the function of the ratio ‘t/d’ after mesh refinement.  The 

results given in Fig. 7 show the effective stiffness decreases with reducing the film 

thickness. 

 

 

4.1.2 Plane stress approximation for the free-standing thin film 

When the film thickness is much less than the grain size, the free-standing thin film 

may be simplified from a three-dimensional thin film to a two-dimensional plane stress 

state.  There have been a number of numerical simulations by using the plane stress 

approximation in the open literature, for example, den Tooder et al. [16], Choi [18], and 

Sze and Sheng [19].  The plane stress simulation is conducted for specimen with 

different number of the grains.  It should be emphasized that the grain orientation is 

randomly assigned with three Euler angles and the plane stress condition (zz = yz = xz 
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= 0) is incorporated into the material properties matrix with respect to global coordinate 

system.  

Table 4 summarizes the statistical data for the plane stress approximation with 

various numbers of the grains and the levels of mesh refinement.  When the number of 

the grains increases, the mean value of the effective stiffness has negligible variation 

and the corresponding standard deviation changes dramatically.  Such feature is 

consistent with the observed phenomenon in Section 3.2.  When the specimen is built 

up with 900 grains, the predicted stiffness in the plane stress approximation is very 

close to the corresponding value obtained from the free-standing thin film with ratio 

t/d=0.1.  It is reasonable to believe that the effective stiffness obtained from the plane 

stress approximation is the limit of the stiffness for the free-standing thin film when the 

ratio t/d is much less than 1. 

 

Table 4 Statistical data for the effective Young’s modulus of copper material in plane 

stress approximation. The sample size is n = 30. 

Specimen 

size 

(L/d)×(L/d) 

Element type 
Number 

of grains 

Refinement 

level 

Number 

of 

elements 

in each 

grain 

Effective 

Young’s modulus 

Mean 

(GPa) 

S.D. 

(GPa) 

20×20 
Quadrilateral 

(Plane 183) 
400 

R0 1 117.05 1.600 

R1 9 116.56 1.577 

R2 81 116.49 1.576 

       

30×30 
Quadrilateral 

(Plane 183) 
900 

R0 1 116.98 1.063 

R1 9 116.50 1.061 

R2 81 116.42 1.060 

       

40×40 
Quadrilateral 

(Plane 183) 
1600 

R0 1 116.63 0.638 

R1 9 116.14 0.638 

R2 81 116.07 0.637 

       

50×50 
Quadrilateral 

(Plane 183) 
2500 

R0 1 116.92 0.539 

R1 9 116.43 0.542 

R2 81 n/a n/a 

       

60×60 
Quadrilateral 

(Plane 183) 
3600 

R0 1 116.72 0.328 

R1 9 116.23 0.329 

R2 81 n/a n/a 

       

80×80 
Quadrilateral 

(Plane 183) 
6400 

R0 1 116.81 0.213 

R1 9 116.32 0.211 

R2 81 n/a n/a 
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4.2 Simulation on the substrate-attached thin film 

 

4.2.1 Boundary and loading conditions 

The geometric configuration and corresponding geometric parameters (t, d, h and L) 

of a substrate-attached thin film is plotted in Fig. 8.  The thickness of the substrate is 

much larger than the thickness of the substrate-attached thin film.  

 

The boundary and loading conditions are prescribed on the film/substrate structure as 

0xu           at 0x                         (8a) 

        xu            at x L                       (8b) 

0yu           along 0, 0x y                (8c) 

                       0zu         along  0,x z h                (8d) 

where ‘h’ denotes the substrate thickness.  The other non-specified boundary 

conditions are traction free.  The effective Young’s modulus of the substrate-attached 

thin film is also evaluated based on Eq. (7).  It should be mentioned that the strain 
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energy, U, is the summation of the strain energy stored in all the grains made up of the 

attached thin film.  

 

4.2.2 Sensitivity of the effective Young’s modulus to the substrate 

In order to compare with the numerical results of the free-standing thin film, the 

attached thin film is modeled with ratio t/d=0.1.  900 grains with randomly assigned 

crystallographic orientation are contained in the substrate-attached thin film.  To 

understand the influence of the substrate on the effective Young’s modulus of the 

attached thin film, a parametric study is carried out for the substrate thickness and the 

substrate stiffness. 

For the study of the substrate thickness, the ratio between the substrate thickness 

and the grain size, h/d, varies between 0.1 and 5.  For the study of the substrate 

stiffness, four types of material, namely polyimide, silicon, sapphire and 

polycrystalline diamond, are selected.  This problem has been noted by Saha and Nix 

[9] in measuring the mechanical properties of the thin film attached to different 

substrate materials.  Polyimide is a softest substrate with Young’s modulus of 2.5GPa 

and Poisson’s ratio of 0.34; while the polycrystalline diamond has the highest stiffness 

of 974GPa and Poisson’s ratio of 0.10.  The silicon substrate used is a piece of single 

crystal Si wafer with the (100) orientation.  The corresponding elastic constants are 

C11 = 165.7GPa, C12 = 63.9GPa and C44 = 79.6GPa.  Sapphire has Young’s modulus of 

470GPa and Poisson’s ratio of 0.25. 

All the numerical results for the effective stiffness of the copper thin film 

attached to different substrate materials with diverse ratio h/t are plotted in Fig. 9.  

Fig. 9 (a), (b), (c) and (d) are associated with one type of substrate material, namely 

polyimide, silicon, sapphire and polycrystalline diamond, respectively. 

It is observed that the effective stiffness of the attached thin film varies 

dramatically when the ratio h/t is less than 10, and the value becomes stable after h/t > 

10.  Another feature is that the effective modulus of the attached thin film increases 

with increasing substrate stiffness.  When the stiffness of the substrate is lower than 
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the stiffness of the film, the deformation of the grains in the film are not constrained by 

the substrate.  Hence, the effective Young’s modulus for the thin film attached on the 

polyimide substrate is close to the equivalent value of the free-standing thin film.  As 

the stiffness of the substrate increases, more constraint on the deformation of the grains 

is imposed by the substrate.  The effective modulus of the film therefore increases.  

Even when the substrate stiffness is comparable with the stiffness of the film material, 

for example, a copper thin film attached to a silicon substrate, the deformation of the 

grains in the film cannot be completely restrained by the substrate.  The effective 

Young’s modulus is not close to the Voigt upper bound.  In the last case of 

polycrystalline diamond substrate which stiffness is seven times of that of copper bulk 

material, shown in Fig 9(d), the deformation of each grain in the film is strongly 

constrained by the substrate.  Thus, each grain may be regarded as in parallel 

connection like Voigt’s assumption.  This leads to a higher stiffness than those 

obtained for the three-dimensional bulk material and the free-standing thin film. 
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4.3 Summary of the numerical results 

In order to have a clear picture of the modulus difference in different geometry 

configurations, the effective stiffness of the thin film normalized by the corresponding 

value of copper bulk material (127GPa) are plotted as a function of the ratio h/t in Fig. 

10.  From the lowest value of the stiffness in the free-standing configuration to the 

highest value in the configuration of a copper film attached to a diamond substrate, we 

see a difference in the order of 20%. 

 

With all the numerical results in our mind, we should have a better understanding 

of the modulus difference for polycrystalline aggregates in different configurations.  

The effective modulus of the thin film attached to a substrate is determined by the 

relative stiffness of the substrate to the film.  The corresponding stiffness can range 

from the value of the free-standing film all the way to the upper bound (144 GPa) if the 

substrate is “rigid”.  Of course, in the real world, the diamond is the hardest material.  

Therefore, the effective modulus of 137GPa for the copper thin films may be the 

highest value that we may encounter in the real measurement.  
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5. Conclusions 

We use a finite element scheme with random distribution strategy to model the 

microstructure of polycrystalline aggregates.  The accuracy and feasibility of this 

scheme is validated by comparing the numerical results for copper bulk material with 

the analytical solutions.  This scheme is then applied to analyze the effective 

stiffness of the free-standing thin film and the substrate-attached thin film, 

respectively.  The numerical results show that the effective stiffness of the 

free-standing thin film decreases with reducing the film thickness.  And, the 

effective modulus of the substrate-attached thin film is affected by the stiffness ratio 

between the substrate and the film material.  The spread of the effective Young’s 

modulus in different configurations could be as large as 20%. 

In all our numerical simulation, no defects (such as micro-voids, grain boundary 

sliding, dislocations and so on) and size effect are involved. We may conclude that the 

geometric configurations do have certain influence on the effective modulus of a 

polycrystalline aggregate. 
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Appendix A. Elastic anisotropy    

In general, the elasticity of single crystal is anisotropic and described by a 

fourth-order elasticity tensor (Cijkl) or compliance tensor (Sijkl) with 21 independent 

material constants.  The number of independent material constants depends further on 

the degree of crystal symmetry.  Particularly, for the face-centered cubic (FCC) and 

body-centered cubic (BCC) crystal symmetry, the number of independent material 

constants reduces from 21 to 3.  Sometimes, it is convenient to express the elasticity 

and compliance tensors in matrix notation.  For FCC or BCC crystals, the elasticity 

and compliance matrices are expressed as 
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Conversion from the tensor notation to the matrix notation is carried out according to 

the rules as follows. 

           111111 cC  , 121122 cC  , 641223 cC  , and so on.    
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Note that the above independent material constants are given in the material coordinate 

system.  When the crystal material coordinate does not coincide with a reference 

system (such as ANSYS global structure coordinate system), the elastic constants for 

the crystal in terms of global structure coordinate system are determined by  

                 
3 3 3 3

( ) ( )

1 1 1 1

S M

ijkl im jn kp lq mnpq

m n p q

C t t t t C
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where the superscript (M) stands for the material coordinate system and the superscript 

(S) represents the structural coordinate system,  respectively.  ijt  are the components 

of  transformation matrix (T) which is calculated in terms of Euler angles (α, β, γ) as  
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                                                                               (13) 

where [0,2 ]  , [0, ]   and [0,2 ]  . In our study, we use sets of Euler angles 

(α, β, γ) to define the crystallographic orientation.  Euler angles correspond to 

angular rotations that transform the global coordinate system to crystal material 

coordinate. 
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Appendix B. Analytical predictions for the effective constants of polycrystalline 

aggregates 

 

B.1 Voigt-Reuss bounds 

With assumption of uniform strain for each grain throughout the whole polycrystalline 

body, Voigt approximations for the effective shear modulus (GV) and bulk modulus 

(KV) are determined by respectively [41] 

                            
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On the other hand, Reuss assumed the uniform stress existing in each of the grains and 

derived the approximations for the effective shear modulus (GR) and bulk modulus 

(KR) as respectively [40] 
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For the FCC or BCC cubic crystal, they are given respectively by 

                    )2(
3

1
1211 ccKK VR                      (18) 

                    441211 3)(5 cccGV                (19) 

                     441211 3)(4/5 sssGR                   (20) 

It was credited to Hill [21] who proved that Voigt approximation is the upper bound 

and Ruess approximation is the lower bounds, i.e. 
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                         VR KKK                      (21) 

and                         VR GGG              (22) 

where subscript ‘R’ refers to Reuss lower bound and ‘V’ stands for Voigt upper bound. 

Meanwhile, the lower and upper bounds for the effective Young’s modulus were given 

by Hill [21]   

*

R VE E E                          (23) 

where 

1 1 1

3 9R R RE G K
                          (24) 

1 1 1

3 9V V VE G K
                          (25) 

 

B.2 Hill’s average 

Hill [21] recommended that the average of Reuss lower bound and Voigt upper 

bound may be a good approximation of the effective elastic constants for 

polycrystalline aggregates, that is 

                             
2/)( VRH KKK 

                    (26) 

                      2/)( VRH GGG               (27) 

The shear modulus and bulk modulus connect with Young’s modulus and Poisson’s 

ratio by 
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