49 research outputs found

    An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase

    Get PDF
    Abnormalities in the ankle contact pressure are related to the onset of osteoarthritis. In vivo measurements are not possible with currently available techniques, so computational methods such as the finite element analysis (FEA) are often used instead. The discrete element method (DEM), a computationally efficient alternative to time-consuming FEA, has also been used to predict the joint contact pressure. It describes the articular cartilage as a bed of independent springs, assuming a linearly elastic behaviour and absence of relative motion between the bones. In this study, we present the extended DEM (EDEM) which is able to track the motion of talus over time. The method was used, with input data from a subject-specific musculoskeletal model, to predict the contact pressure in the ankle joint during gait. Results from EDEM were also compared with outputs from conventional DEM. Predicted values of contact area were larger in EDEM than they were in DEM (4.67 and 4.18 cm2, respectively). Peak values of contact pressure, attained at the toe-off, were 7.3 MPa for EDEM and 6.92 MPa for DEM. Values predicted from EDEM fell well within the ranges reported in the literature. Overall, the motion of the talus had more effect on the extension and shape of the pressure distribution than it had on the magnitude of the pressure. The results indicated that EDEM is a valid methodology for the prediction of ankle contact pressure during daily activities

    Complexity of the Tensegrity Structure for Dynamic Energy and Force Distribution of Cytoskeleton during Cell Spreading

    Get PDF
    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as cells reached maximum spreading. The dynamic flows of energy in struts imply that microtubules contribute to structure stabilization

    Cell-Autonomous Requirement for Rx Function in the Mammalian Retina and Posterior Pituitary

    Get PDF
    Rx is a paired-like homeobox gene that is required for vertebrate eye formation. Mice lacking Rx function do not develop eyes or the posterior pituitary. To determine whether Rx is required cell autonomously in these tissues, we generated embryonic chimeras consisting of wild type and Rx−/− cells. We found that in the eye, Rx-deficient cells cannot participate in the formation of the neuroretina, retina pigment epithelium and the distal part of the optic stalk. In addition, in the ventral forebrain, Rx function is required cell autonomously for the formation of the posterior pituitary. Interestingly, Rx−/− and wild type cells segregate before the morphogenesis of these two tissues begins. Our observations suggest that Rx function is not only required for the morphogenesis of the retina and posterior pituitary, but also prior to morphogenesis, for the sorting out of cells to form distinct fields of retinal/pituitary cells
    corecore