23 research outputs found

    Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family

    Get PDF
    Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibres. Here we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process

    Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by <it>AMBP </it>– and five homologous heavy chains (encoded by <it>ITIH1</it>, <it>ITIH2</it>, <it>ITIH3</it>, <it>ITIH4</it>, and <it>ITIH5</it>), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis.</p> <p>Methods</p> <p>We systematically investigated differential gene expression of the <it>ITIH </it>gene family, as well as <it>AMBP </it>and the interacting partner <it>TNFAIP6 </it>in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>We found that <it>ITIH </it>genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, <it>ITIH </it>genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose <it>ITIH2 </it>expression in human breast cancer. Loss of <it>ITIH2 </it>expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule.</p> <p>Conclusion</p> <p>Altogether, this is the first systematic analysis on the differential expression of <it>ITIH </it>genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.</p

    Immunological properties of Oxygen-Transport Proteins: Hemoglobin, Hemocyanin and Hemerythrin

    Get PDF

    Gene silencing by RNA interference in the ectoparasitic mite, Psoroptes ovis

    Get PDF
    Abstract The presence of components of the RNA interference (RNAi) pathway in Psoroptes ovis, an ectoparasitic mite responsible for psoroptic mange, was investigated through interrogation of the P. ovis genome. Homologues of transcripts representing critical elements for achieving effective RNAi in the mite, Tetranychus urticae and the model organisms Caenorhabditis elegans and Drosophila melanogaster were identified and, following the development of a non-invasive immersion method of double stranded RNA delivery, gene silencing by RNAi was successfully demonstrated in P. ovis. Significant reductions in transcript levels were achieved for three target genes which encode the Group 2 allergen (Pso o 2), mu-class glutathione S-transferase (PoGST-mu1) and beta-tubulin (Poβtub). This is the first demonstration of RNAi in P. ovis and provides a mechanism for mining transcriptomic and genomic datasets for novel control targets against this economically important ectoparasite

    New insights to clathrin and adaptor protein 2 for the design and development of therapeutic strategies

    No full text
    The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer’s disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies

    Comparative genomic study of arachnid immune systems indicates loss of beta-1,3-glucanase-related proteins and the immune deficiency pathway

    No full text
    Analyses of arthropod genomes have shown that the genes in the different innate humoral immune responses are conserved. These genes encode proteins that are involved in immune signalling pathways that recognize pathogens and activate immune responses. These immune responses include phagocytosis, encapsulation of the pathogen and production of effector molecules for pathogen elimination. So far, most studies have focused on insects leaving other major arthropod groups largely unexplored. Here, we annotate the immune-related genes of six arachnid genomes and present evidence for a conserved pattern of some immune genes, but also evolutionary changes in the arachnid immune system. Specifically, our results suggest that the family of recognition molecules of beta-1,3-glucanase-related proteins (GRPs) and the genes from the immune deficiency (IMD) signalling pathway have been lost in a common ancestor of arachnids. These findings are consistent with previous work suggesting that the humoral immune effector proteins are constitutively produced in arachnids in contrast to insects, where these have to be induced. Further functional studies are needed to verify this. We further show that the full haemolymph clotting cascade found in the horseshoe crab is retrieved in most arachnid genomes. Tetranychus lacks at least one major component, although it is possible that this cascade could still function through recruitment of a different protein. The gel-forming protein in horseshoe crabs, coagulogen, was not recovered in any of the arachnid genomes; however, it is possible that the arachnid clot consists of a related protein, spatzle, that is present in all of the genomes

    The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation

    Full text link
    Inter-alpha-trypsin inhibitors (ITIs) are protease inhibitors stabilizing the extracellular matrix. ITIs consist of one light (bikunin) and two heavy chains (ITIHs). We have recently characterized ITIH5, a novel member of the ITIH gene family, and showed that its messenger RNA is lost in a high proportion of breast tumours. In the present study, an ITIH5-specific polyclonal antibody was generated, validated with western blot and used for immunohistochemical analysis on a tissue microarray; ITIH5 was strongly expressed in epithelial cells of normal breast (n=11/15), while it was lost or strongly reduced in 42% (92/217) of invasive breast cancers. ITIH5 expression in invasive carcinomas was associated with positive expression of oestrogen receptor (P=0.008) and histological grade (P=0.024). Correlation of ITIH5 expression with clinical outcome revealed that patients with primary tumours retaining abundant ITIH5 expression had longer recurrence-free survival (RFS; P=0.037) and overall survival (OS; P=0.044), compared to those with reduced expression (mean RFS: 102 vs 78 months; mean OS: 120 vs 105 months). Methylation-specific PCR analysis frequently showed strong methylation of the ITIH5 promoter in primary breast tumours (41%, n=109) and breast cancer cell lines (n=6). Methylation was significantly associated with mRNA loss (P<0.001; n=39), and ITIH5 expression was induced after treatment of tumour cell lines with the demethylating agent 5-aza-2'-deoxycytidine. Moreover, ITIH5 promoter methylation was significantly associated with reduced OS (P=0.008). The cellular function of ITIH5 was evaluated by forced expression of a full-length ITIH5 complementary DNA in the breast cancer cell line MDA-MB-231, which does not endogenously express ITIH5. ITIH5-expressing clones showed a 40% reduced proliferation rate compared to mock-transfected cells. Overall, these data show that promoter methylation-mediated loss of ITIH5 expression is associated with unfavourable outcome in breast cancer patients, and thus ITIH5 could be used as a prognostic marker, although this marker is not multivariate independent due to its close association with ER expression. Our data indicate that ITIH5 is a candidate class II tumour suppressor gene and could be involved in tumour progression, invasion and metastasis, as its absence is associated with increased proliferation rates and a prognostic value indicating poor clinical outcome
    corecore