96 research outputs found

    Scattering of Line-Ring Vortices in a Superfluid

    Get PDF
    We study the scattering of vortex rings by a superfluid line vortex using the Gross-Pitaevskii equation in a parameter regime where a hydrodynamic description based on a vortex filament approximation is applicable. By using a vortex extraction algorithm, we are able to track the location of the vortex ring as a function of time. Using this, we show that the scattering of the vortex ring in our Gross-Pitaevskii simulations is well captured by the local induction approximation of a vortex filament model for a wide range of impact parameters. The scattering of a vortex ring by a line vortex is characterised by the initial offset of the centre of the ring from the axis of the vortex. We find that a strong asymmetry exists in the scattering of a ring as a function of this initial scattering parameter

    Use of risk stratification to target therapies in patients with recent onset arthritis; design of a prospective randomized multicenter controlled trial

    Get PDF
    Background. Early and intensive treatment is important to inducing remission and preventing joint damage in patients with rheumatoid arthritis. While intensive combination therapy (Disease Modifying Anti-rheumatic Drugs and/or biologicals) is the most effective, rheumatologists in daily clinical practice prefer to start with monotherapy methotrexate and bridging corticosteroids. Intensive treatment should be started as soon as the first symptoms manifest, but at this early stage, ACR criteria may not be fulfilled, and there is a danger of over-treatment. We will therefore determine which induction therapy is most effective in the very early stage of persistent arthritis. To overcome over-treatment and under-treatment, the intensity of induction therapy will be based on a prediction model that predicts patients' propensity for persistent arthritis. Methods. A multicenter stratified randomized single-blind controlled trial is currently being performed in patients 18 years or older with recent-onset arthritis. Eight hundred ten patients are being stratified according to the likelihood of their developing persistent arthritis. In patients with a high probability of persistent arthritis, we will study combination Disease Modifying Antirheumatic Drug therapy compared to monotherapy methotrexate. In patients with an intermediate probability of persistent arthritis, we will study Disease Modifying Antirheumatic Drug of various intensities. In patients with a low probability, we will study non-steroidal anti-inflammatory drugs, hydroxychloroquine and a single dose of corticosteroids. If disease activity is not sufficiently reduced, treatment will be adjusted according to a step-up protocol. If remission is achieved for at least six months, medication will be tapered off. Patients will be followed up every three months over two years. Discussion. This is the first rheumatological study to base treatment in early arthritis on a prediction rule. Treatment will be stratified according to the probability of persistent arthritis, and different combinations of treatment per stratum will be evaluated. Treatment will be started early, and patients will not need to meet the ACR-criteria for rheumatoid arthritis. Trial registration. This trial has been registered in Current Controlled Trials with the ISRCTN26791028

    Advantages of a Polycentric Approach to Climate Change Policy

    Get PDF
    Lack of progress in global climate negotiations has led scholars to reconsider polycentric approaches to climate policy. Several examples of subglobal mechanisms to reduce greenhouse-gas emissions have been touted, but it remains unclear why they might achieve better climate outcomes than global negotiations alone. Decades of work conducted by researchers associated with the Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis at Indiana University have emphasized two chief advantages of polycentric approaches over monocentric ones: they provide more opportunities for experimentation and learning to improve policies over time, and they increase communications and interactions — formal and informal, bilateral and multilateral — among parties to help build the mutual trust needed for increased cooperation. A wealth of theoretical, empirical and experimental evidence supports the polycentric approach

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    Get PDF
    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process

    Inhibition of IL-10 Production by Maternal Antibodies against Group B Streptococcus GAPDH Confers Immunity to Offspring by Favoring Neutrophil Recruitment

    Get PDF
    Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')2 fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10−/−) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated
    corecore