45 research outputs found

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens

    Get PDF
    he antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms

    Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae)

    Get PDF
    BACKGROUND: Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. METHODS: In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species.RESULTS: Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis.CONCLUSIONS: During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses

    Efficacy of cultural control measures against the banana weevil, Cosmopolites sordidus (Germar), in South Africa

    No full text
    The banana weevil, Cosmopolites sordidus, is the most important insect pest of banana and plantain in the world. Cultural control methods were investigated over 2 years in southern KwaZulu-Natal, South Africa. Harvesting at ground level and dissection of remnants (treatment 1), and covering the base of the mat (entire plant consisting of several meristems) with soil and moving debris to the inter-row (treatment 2), were compared to a positive control that involved treatment of plants with a registered pesticide (treatment 3), and a negative control that involved harvesting at 150 cm from the collar with no soil or sanitation amendments (treatment 4). Yield, weevil damage and pseudostem girth of plants were measured from August to November annually, while adult beetle densities were assessed over 4 weeks in October/November and April. Nematode samples were taken and analysed in October/November every year. Damage parameters included the coefficient of infestation, the percentage coefficient of infestation (PCI) at two intervals, the summed PCI value, the percentage cross-sectional damage of the central cylinder and cortex, and the mean cross-sectional damage percentage. A randomized block design with three replicates was used in the trial. The parameters were similar before the onset of the trial. Fruit yield and plant girth, corrected by nematode densities, were not significantly different in any treatment, nor were the nematodes controlled. Soil cover and recession of remnants was the only effective treatment, significantly reducing the CI, but not the adult density or the other damage parameters. Soil cover showed promise as a cultural control method because it only needs to be applied seasonally and reduced the percentage cross-sectional damage of the central cylinder, the damage parameter most closely related to yield, by 14%

    Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder.

    No full text
    International audienceProtein secretion systems are complex molecular machineries that translocate proteins through the outer membrane, and sometimes through multiple other barriers. They have evolved by co-option of components from other envelope-associated cellular machineries, making them sometimes difficult to identify and discriminate. Here, we describe how to identify protein secretion systems in bacterial genomes using MacSyFinder. This flexible computational tool uses the knowledge stemming from experimental studies to identify homologous systems in genome data. It can be used with a set of predefined models-"TXSScan"-to identify all major secretion systems of diderm bacteria (i.e., with inner and with LPS-containing outer membranes). For this, it identifies and clusters colocalized components of secretion systems using sequence similarity searches with hidden Markov model protein profiles. Finally, it checks whether the genetic content and organization of clusters satisfy the constraints of the model. TXSScan models can be customized to search for variants of known systems. The models can also be built from scratch to identify novel systems. In this chapter, we describe a complete pipeline of analysis, including the identification of a reference set of experimentally studied systems, the identification of components and the construction of their protein profiles, the definition of the models, their optimization, and, finally, their use as tools to search genomic data
    corecore