35 research outputs found

    The Physiotherapy eSkills Training Online resource improves performance of practical skills: A controlled trial

    Get PDF
    Background: E-learning is a common and popular mode of educational delivery, but little is known about its effectiveness in teaching practical skills. The aim of this study was to determine whether the Physiotherapy eSkills Training Online resource in addition to usual teaching improved the performance of practical skills in physiotherapy students. Method: This study was a non-randomised controlled trial. The participants were graduate entry physiotherapy students enrolled in consecutive semesters of a neurological physiotherapy unit of study. The experimental group received the Physiotherapy eSkills Training Online resource as well as usual teaching. The Physiotherapy eSkills Training Online resource is an online resource incorporating (i) video-clips of patient-therapist simulations; (ii) supportive text describing the aim, rationale, equipment, key points, common errors and methods of progression; and (iii) a downloadable PDF document incorporating the online text information and a still image of the video-clip for each practical skill. The control group received usual teaching only. The primary outcomes were the overall performance of practical skills as well as their individual components, measured using a practical examination. Results: The implementation of the Physiotherapy eSkills Training Online resource resulted in an increase of 1.6 out of 25 (95% CI -0.1 to 3.3) in the experimental group compared with the control group. In addition, the experimental group scored 0.5 points out of 4 (95% CI 0 to 1.1) higher than the control group for 'effectiveness of the practical skill' and 0.6 points out of 4 (95% CI 0.1 to 1.1) higher for 'rationale for the practical skill'. Conclusion: There was improvement in performance of practical skills in students who had access to the Physiotherapy eSkills Training Online resource in addition to usual teaching. Students considered the resource to be very useful for learning.7 page(s

    Route planning with transportation network maps: an eye-tracking study.

    Get PDF
    Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning

    Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    Get PDF
    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds
    corecore