391 research outputs found

    Optical and scratch resistant properties of diamondlike carbon films deposited with single and dual ion beams

    Get PDF
    Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries

    Total hemispherical emittance measured at high temperatures by the calorimetric method

    Get PDF
    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (plus or minus 5 percent). The probable error of the CVE measurements was typically less than 1 percent

    Dual ion beam processed diamondlike films for industrial applications

    Get PDF
    Single and dual beam ion source systems are used to generate amorphous diamondlike carbon (DLC) films, which were evaluated for a variety of applications including protective coatings on transmitting materials, power electronics as insulated gates and corrosion resistant barriers. A list of the desirable properties of DLC films along with potential applications are presented

    High temperature radiator materials for applications in the low Earth orbital environment

    Get PDF
    Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials (304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr)) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in an RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated

    Mechanisms of Electrical Conductivity in Y(1-x)CaxBa2Cu3O6.1 System

    Full text link
    Systematic studies of transport properties in deoxygenated Y(1-x)CaxBa2Cu3O6.1 series allowed to propose a diagram of conductivity mechanisms for this system. At intermediate temperature a variable range hopping (VRH) in 2 dimensions prevails. At lower temperature VRH in the presence of a Coulomb gap for smaller x and VRH in 2 dimensions for larger x are found. In a vicinity of superconductivity we observe conductivity proportional to \sqrt{T}. Thermally activated conductivity dominates at higher temperature. This diagram may be universal for the whole family of undoped high Tc related cuprates.Comment: 5 page

    Arc-textured metal surfaces for high thermal emittance space radiators

    Get PDF
    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1 percent Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 microns were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. The ac arc texturing was found to increase the thermal emittance at 800 K from 0.05 to 0.70

    Suppression of 2D superconductivity by the magnetic field: quantum corrections vs superconductor-insulator transition

    Full text link
    Magnetotransport of superconducting Nd_{2-x}Ce_xCuO_{4+y} (NdCeCuO) films is studied in the temperature interval 0.3-30 K. The microscopic theory of the quantum corrections to conductivity, both in the Cooper and in the diffusion channels, qualitatively describes the main features of the experiment including the negative magnetoresistance in the high field limit. Comparison with the model of the field-induced superconductor-insulator transition (SIT) is included and a crossover between these two theoretical approaches is discussed.Comment: 5 pages, 4 figures. Submitted to JETP Letter

    Two-dimensional quantum interference contributions to the magnetoresistance of Nd{2-x}Ce{x}CuO{4-d} single crystals

    Full text link
    The 2D weak localization effects at low temperatures T = (0.2-4.2)K have been investigated in nonsuperconducting sample Nd{1.88}Ce{0.12}CuO{4-d} and in the normal state of the superconducting sample Nd{1.82}Ce{0.18}CuO{4-d} for B>B_c2. The phase coherence time and the effective thickness dd of a conducting CuO_2 layer have been estimated by the fitting of 2D weak localization theory expressions to the magnetoresistivity data for the normal to plane and the in-plane magnetic fields.Comment: 5 pages, 4 postscript figure

    Development Status of the NASA 30-cm Ion Thruster and Power Processor

    Get PDF
    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway
    • …
    corecore