46 research outputs found

    Model Construction and a Possibility of Cupratelike Pairing in a New d(9) Nickelate Superconductor (Nd,Sr)NiO2

    Get PDF
    Effective models are constructed for a newly discovered superconductor (Nd,Sr)NiO2, which has been considered as a possible nickelate analog of the cuprates. Estimation of the effective interaction, which turns out to require a multiorbital model that takes account of all the orbitals involved on the Fermi surface, shows that the effective interactions are significantly larger than in the cuprates. A fluctuation exchange study suggests occurrence of dx2−y2-wave superconductivity, where the transition temperature should be lowered from the cuprates due to the larger interaction

    Model-mapped RPA for determining the effective Coulomb interaction

    Get PDF
    We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named “model-mapped RPA” takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4

    Electronic properties of alkali-metal loaded zeolites -- a "supercrystal" Mott insulator

    Full text link
    First-principles band calculations are performed for the first time for an open-structured zeolite (LTA) with guest atoms (potassium) introduced in their cages. A surprisingly simple band structure emerges, which indicates that this system may be regarded as a "supercrystal", where each cluster of guest atoms with diameter \sim10\AA acts as a "superatom" with well-defined ss- and pp-like orbitals, which in turn form the bands around the Fermi energy. The calculated Coulomb and exchange energies for these states turn out to be in the strongly-correlated regime. With the dynamical mean-field theory we show the system should be on the Mott-insulator side, and, on a magnetic phase diagram for degenerate-orbital systems, around the ferromagnetic regime, in accord with experimental results. We envisage this class of systems can provide a new avenue for materials design.Comment: 4 pages, 4 figure

    Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation

    Full text link
    Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura"

    Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides

    Get PDF
    Using strain to control oxynitride properties. 京都大学プレスリリース. 2020-12-01.原子空孔の配列を制御する新手法の発見. 京都大学プレスリリース. 2020-12-02.Perovskite oxides can host various anion-vacancy orders, which greatly change their properties, but the order pattern is still difficult to manipulate. Separately, lattice strain between thin film oxides and a substrate induces improved functions and novel states of matter, while little attention has been paid to changes in chemical composition. Here we combine these two aspects to achieve strain-induced creation and switching of anion-vacancy patterns in perovskite films. Epitaxial SrVO3 films are topochemically converted to anion-deficient oxynitrides by ammonia treatment, where the direction or periodicity of defect planes is altered depending on the substrate employed, unlike the known change in crystal orientation. First-principles calculations verified its biaxial strain effect. Like oxide heterostructures, the oxynitride has a superlattice of insulating and metallic blocks. Given the abundance of perovskite families, this study provides new opportunities to design superlattices by chemically modifying simple perovskite oxides with tunable anion-vacancy patterns through epitaxial lattice strain

    Towards Trial Simulation of Homogeneous Behavior

    Get PDF
    AbstractStrategic behavior of companies in the industry is composed of two parts, homogenization and differentiation. Strategic homogeneous behavior of the company builds the stabilized industry especially. Although at the present time the simulation is still in an early concept stage, we created it by multi-agent simulation (MAS). Basic concept of the homogeneous behavior simulations is reported in order to obtain feedback from a variety of perspectives. Then, in this paper the attempt of the MAS suggests that how to mix homogeneous behavior and differentiation behavior for the competitor's strategic behavior in industry
    corecore