86 research outputs found

    A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Synaptic transmission and long-term potentiation (LTP) in the CA1 region of hippocampal slices have been studied during ageing of a double transgenic mouse strain relevant to early-onset familial Alzheimer's disease (AD). This strain, which over-expresses both the 695 amino acid isoform of human amyloid precursor protein (APP) with K670N and M671L mutations and presenilin 1 with the A246E mutation, has accelerated amyloidosis and plaque formation. There was a decrease in synaptic transmission in both wildtype and transgenic mice between 2 and 9 months of age. However, preparing slices from 14 month old animals in kynurenic acid (1 mM) counteracted this age-related deficit. Basal transmission and paired-pulse facilitation was similar between the two groups at all ages (2, 6, 9 and 14 months) tested. Similarly, at all ages LTP, induced either by theta burst stimulation or by multiple tetani, was normal. These data show that a prolonged, substantially elevated level of Aβ are not sufficient to cause deficits in the induction or expression of LTP in the CA1 hippocampal region.Published versio

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis

    No full text
    Using different DNA probes from the first two previously described alkane-inducible cytochrome P450 genes of the Candida tropicalis CYP52 gene family, we isolated five independent additional members by screening a genomic library under low-stringency conditions. These genes are not allelic variants and, when taken gogether, constitute the largest gene family known in this organism. The seven members of this gene family are located on four different chromosomes and four of them are tandemly arranged on the C. tropicalis genome. The products of the seven genes, alk1 to alk7, were compared to each other and revealed a high degree of divergence: the two most diverged proteins exhibit a sequence identity of only 32%. Six of the seven genes were shown to be induced by a variety of different aliphatic carbon sources but repressed when the organism was grown on glucose. Three of the five additional CYP52 genes could be successfully expressed in Saccharomyces cerevisiae and display different substrate specificities in in vitro assays with model substrates: alk2 and alk3 exhibit a strong preference for hexadecane, while alk4 and alk5 preferentially hydroxylate lauric acid
    corecore