741 research outputs found
Cyclic AMP Inhibits Secretion From Electroporated Human Neutrophils
It has long been known that Intracellular cAMP inhibits and cGMP enhances intact neutrophil function. However, these effects are modest and require relatively high concentrations of the cyclic nucleotides. We decided to reâexamine the effects of cyclic nucleotides on Ca2+âinduced secretion by electroporated cells. This system allowed us to bypass normal cell surface receptorâligand interactions as well as to directly expose the intracellular space to native cyclic nucleotides. We found that concentrations of cAMP as low as 3 ÎŒM inhibited Ca2+âinduced secretion; 30â300 ÎŒM cAMP was maximally inhibitory. cAMP was actually slightly more potent than dibutyryl cAMP, a membraneâpermeant derivative. In contrast, cGMP was only slightly stimulatory at 3 ÎŒM and modestly inhibitory at 300 ÎŒM; dibutyryl cGMP was ineffective. A more detailed investigation of the effects of cAMP showed that inhibition was only obtained in the presence of Mg2+. Halfâmaximal inhibition by cAMP occurred at 10â30 ÎŒM. Inhibition by cAMP was achieved by shifting the Ca2+ doseâresponse curve for secretion to the right; this was observed for the release of both specific granules (vitamin B12 binding protein) and azurophil granules (Bâglucuronidase). We previously showed that ATP could enhance Ca2+âinduced secretion in the presence of Mg2+, apparently by interacting with a cell surface purine receptor. However, increasing concentrations of ATP could not overcome inhibition by cAMP; this suggested that cAMP acted at some site other than the purine receptor. Inhibition by cAMP was also less apparent in the presence of the protein kinase C agonist phorbol myristate acetate (PMA), suggesting that the cyclic nucleotide did not produce systemic desensitization of the neutrophils. In summary, these results demonstrate that low, physiologically relevant concentrations of cAMP can modulate neutrophil responsiveness.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141578/1/jlb0172.pd
A Microstructure Sensitive Approach for the Prediction of the Creep Behaviour and Life under Complex Loading Paths
The prediction of the creep behaviour and life of components of aeronautic engines like high pressure turbine blades is still a challenging issue due to non-isothermal loadings. Indeed, certification procedures of turboshaft engines for helicopters consist of complex thermomechanical histories, sometimes including short and very high temperature excursions close to the Îłâ-solvus (T~1200°C) of the blade alloy. A better design of those components could be gained using a model that takes into account non-isothermal loadings inducing microstructural changes.
Most of the commonly used models consider only a nearly constant (or slowly evolving) microstructure, i.e. far from the rapid microstructure evolutions encountered during close Îłâ-solvus overheatings where a rapid dissolution/precipitation of the Îłâ-phase and fast recovery mechanisms were observed by Cormier et al. (2007b). A new constitutive modelling approach was hence recently proposed in a crystal viscoplasticity framework to capture the transient effects of such rapid microstructure evolutions on the creep behaviour and life (Cormier and Cailletaud (2010a)).
In this article, an updated version of this model is detailed. Special attention will be paid to (i) the effect of the accumulated plastic strain on the microstructure evolution, (ii) the introduction of an additional damage formulation, and (iii) the creep strain at failure. The performances of the model are illustrated on the basis of isothermal or complex non-isothermal creep experiments performed on nearly [001] oriented samples
Induced Anticlinic Ordering and Nanophase Segregation of Bow-Shaped Molecules in a Smectic Solvent
Recent experiments indicate that doping low concentrations of bent-core
molecules into calamitic smectic solvents can induce anticlinic and biaxial
smectic phases. We have carried out Monte Carlo (MC) simulations of mixtures of
rodlike molecules (hard spherocylinders with length/breadth ratio ) and bow- or banana-shaped molecules (hard spherocylinder dimers
with length/breadth ratio or 2.5 and opening angle ) to
probe the molecular-scale organization and phase behavior of rod/banana
mixtures. We find that a low concentration (3%) of dimers
induces anticlinic (SmC) ordering in an untilted smectic (SmA) phase for
. For smaller , half of each bow-shaped
molecule is nanophase segregated between smectic layers, and the smectic layers
are untilted. For , no tilted phases are induced. However,
with decreasing we observe a sharp transition from {\sl intralamellar}
nanophase segregation (bow-shaped molecules segregated within smectic layers)
to {\sl interlamellar} nanophase segregation (bow-shaped molecules concentrated
between smectic layers) near . These results demonstrate that
purely entropic effects can lead to surprisingly complex behavior in rod/banana
mixtures.Comment: 5 pages Revtex, 7 postscript figure
Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota
BACKGROUND: Murine norovirus (MNV) is the most common gastrointestinal pathogen of research mice and can alter research outcomes in biomedical mouse models of inflammatory bowel disease (IBD). Despite indications that an altered microbiota is a risk factor for IBD, the response of the murine intestinal microbiota to MNV infection has not been examined. Microbiota disruption caused by MNV infection could introduce the confounding effects observed in research experiments. Therefore, this study investigated the effects of MNV infection on the intestinal microbiota of wild-type mice. RESULTS: The composition of the intestinal microbiota was assessed over time in both outbred Swiss Webster and inbred C57BL/6 mice following MNV infection. Mice were infected with both persistent and non-persistent MNV strains and tissue-associated or fecal-associated microbiota was analyzed by 16S rRNA-encoding gene pyrosequencing. Analysis of intestinal bacterial communities in infected mice at the phylum and family level showed no major differences to uninfected controls, both in tissue-associated samples and feces, and also over time following infection, demonstrating that the intestinal microbiota of wild-type mice is highly resistant to disruption following MNV infection. CONCLUSIONS: This is the first study to describe the intestinal microbiota following MNV infection and demonstrates that acute or persistent MNV infection is not associated with major disruptions of microbial communities in Swiss Webster and C57BL/6 mice
Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota
Abstract
Background
Murine norovirus (MNV) is the most common gastrointestinal pathogen of research mice and can alter research outcomes in biomedical mouse models of inflammatory bowel disease (IBD). Despite indications that an altered microbiota is a risk factor for IBD, the response of the murine intestinal microbiota to MNV infection has not been examined. Microbiota disruption caused by MNV infection could introduce the confounding effects observed in research experiments. Therefore, this study investigated the effects of MNV infection on the intestinal microbiota of wild-type mice.
Results
The composition of the intestinal microbiota was assessed over time in both outbred Swiss Webster and inbred C57BL/6 mice following MNV infection. Mice were infected with both persistent and non-persistent MNV strains and tissue-associated or fecal-associated microbiota was analyzed by 16S rRNA-encoding gene pyrosequencing. Analysis of intestinal bacterial communities in infected mice at the phylum and family level showed no major differences to uninfected controls, both in tissue-associated samples and feces, and also over time following infection, demonstrating that the intestinal microbiota of wild-type mice is highly resistant to disruption following MNV infection.
Conclusions
This is the first study to describe the intestinal microbiota following MNV infection and demonstrates that acute or persistent MNV infection is not associated with major disruptions of microbial communities in Swiss Webster and C57BL/6 mice.http://deepblue.lib.umich.edu/bitstream/2027.42/112329/1/40168_2012_Article_7.pd
What Research Ethics Should Learn from Genomics and Society Research: Lessons from the ELSI Congress of 2011
Research on the ethical, legal, and social implications (ELSI) of human genomics has devoted significant attention to the research ethics issues that arise from genomic science as it moves through the translational process. Given the prominence of these issues in today's debates over the state of research ethics overall, these studies are well positioned to contribute important data, contextual considerations, and policy arguments to the wider research ethics community's deliberations, and ultimately to develop a research ethics that can help guide biomedicine's future. In this essay, we illustrate this thesis through an analytic summary of the research presented at the 2011 ELSI Congress, an international meeting of genomics and society researchers. We identify three pivotal factors currently shaping genomic research, its clinical translation, and its societal implications: (1) the increasingly blurred boundary between research and treatment; (2) uncertainty â that is, the indefinite, indeterminate, and incomplete nature of much genomic information and the challenges that arise from making meaning and use of it; and (3) the role of negotiations between multiple scientific and non-scientific stakeholders in setting the priorities for and direction of biomedical research, as it is increasingly conducted âin the public square.
Direct sequencing of the human microbiome readily reveals community differences
Future sequencing of the human microbiota will require greater breadth rather than depth
Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions
Improvements in sequencing technologies and reduced experimental costs have
resulted in a vast number of studies generating high-throughput data. Although
the number of methods to analyze these "omics" data has also increased,
computational complexity and lack of documentation hinder researchers from
analyzing their high-throughput data to its true potential. In this chapter we
detail our data-driven, transkingdom network (TransNet) analysis protocol to
integrate and interrogate multi-omics data. This systems biology approach has
allowed us to successfully identify important causal relationships between
different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of
data
Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development
Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cellâcell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro
- âŠ