3,539 research outputs found
Recommended from our members
High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet
A high-performance, wearable thermoelectric generator (TEG) was fabricated with a highly aligned carbon nanotube (CNT) sheet. The aligned CNT sheet exhibits extraordinary electrical conductivity compared to disordered CNT sheets and also can be directly fabricated as a continuous TEG without metal electrode interconnects. This provides a significant reduction in contact resistance between TE legs and electrodes compared to traditional TEGs, resulting in higher power output. In addition, the continuity of the module without any disconnected parts provides high degrees of mechanical stability and durability. This robust and scalable approach to flexible TEG fabrication paves the way for CNT applications in lightweight, flexible, and wearable electronics
G-quadruplex formation using fluorescent oligonucleotides as a detection method for discriminating AGG trinucleotide repeats
We have developed a simple and sensitive system for detecting AGG trinucleotide repeats through the formation of intermolecular G-quadruplexes using a fluorescent oligonucleotide. The fluorescence signal increased rapidly and dramatically by 44.7-fold with respect to the low background signal in the presence of RNA agg repeats and by 35.0-fold in the presence of DNA AGG repeats.1163Ysciescopu
Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain
We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma
Oxygen-Vacancy-Induced Orbital Reconstruction of Ti Ions at the Interface of LaAlO3/SrTiO3 Heterostructures: A Resonant Soft-X-Ray Scattering Study
Resonant soft-x-ray scattering measurements have been performed to investigate interface electronic structures of (LaAlO3/SrTiO3) superlattices. Resonant scattering intensities at superlattice reflections show clear evidence of degeneracy lifting in t(2g) states of interface Ti ions. Polarization dependence of intensities indicates the energy of d(xy) states is lower by similar to 1 eV than two other t(2g) states. The energy splitting is insensitive to epitaxial strain. The orbital reconstruction is induced by oxygen vacancies and confined to the interface within two unit cells, indicating charge compensation at the polar interfaces. DOI: 10.1103/PhysRevLett.110.017401X112723Nsciescopu
An Efficient ISAR Imaging Method for Multiple Targets
This paper proposes an efficient method to obtain TSAR images of multiple targets flying in formation. The proposed method improves the coarse alignment and segmentation of the existing method. The improved coarse alignment method models the flight trajectory using a combination of a polynomial and Gaussian basis functions, and the optimum parameter of the trajectory is found using particle swarm optimization. In the improved segmentation, the binary image of the bulk TSAR image that contains all targets is constructed using a two-dimensional constant false alarm detector, then the image closing method is applied to the binary image. Finally, the connected set of binary pixels is used to segment each target from the bulk image. Simulations using three targets composed of point scattering centers and the measured data of the Boeing747 aircraft prove the effectiveness of the proposed method to segment three targets flying in formation.X113Ysciescopu
Presumed pseudokinase VRK3 functions as a BAF kinase
Vaccinia-related kinase 3 (VRK3) is known as a pseudokinase that is catalytically inactive due to changes in motifs that are essential for kinase activity. Although VRK3 has been regarded as a genuine pseudokinase from structural and biochemical studies, recent reports suggest that VRK3 acts as an active kinase as well as a signaling scaffold in cells. Here, we demonstrate that VRK3 phosphorylates the nuclear envelope protein barrier-to-autointegration factor (BAF) on Ser4. Interestingly, VRK3 kinase activity is dependent upon its N-terminal regulatory region, which is excluded from the determination of its crystal structure. Furthermore, the kinase activity of VRK3 is involved in the regulation of the cell cycle. VRK3 expression levels increase during interphase, whereas VRK1 is enriched in late G2 and early M phase. Ectopic expression of VRK3 induces the translocation of BAF from the nucleus to the cytoplasm. In addition, depletion of VRK3 decreases the population of proliferating cells. These data suggest that VRK3-mediated phosphorylation of BAF may facilitate DNA replication or gene expression by facilitating the dissociation of nuclear envelope proteins and chromatin during interphase. (C) 2015 Elsevier B.V. All rights reserved.1174Ysciescopu
Rhythmic interaction between Period1 mRNA and HnRNP Q leads to circadian time-dependent translation
The mouse PERIOD1 (mPER1) protein, along with other clock proteins, plays a crucial role in the maintenance of circadian rhythms. mPER1 also provides an important link between the circadian system and the cell cycle system. Here we show that the circadian expression of mPER1 is regulated by rhythmic translational control of mPer1 mRNA together with transcriptional modulation. This time-dependent translation was controlled by an internal ribosomal entry site (IRES) element in the 5' untranslated region (5'-UTR) of mPer1 mRNA along with the trans-acting factor mouse heterogeneous nuclear ribonucleoprotein Q (mhnRNP Q). Knockdown of mhnRNP Q caused a decrease in mPER1 levels and a slight delay in mPER1 expression without changing mRNA levels. The rate of IRES-mediated translation exhibits phase-dependent characteristics through rhythmic interactions between mPer1 mRNA and mhnRNP Q. Here, we demonstrate 5'-UTR-mediated rhythmic mPer1 translation and provide evidence for posttranscriptional regulation of the circadian rhythmicity of core clock genes.X112932sciescopu
Recommended from our members
Nanocluster-Based Ultralow-Temperature Driven Oxide Gate Dielectrics for High-Performance Organic Electronic Devices.
The development of novel dielectric materials with reliable dielectric properties and low-temperature processibility is crucial to manufacturing flexible and high-performance organic thin-film transistors (OTFTs) for next-generation roll-to-roll organic electronics. Here, we investigate the solution-based fabrication of high-k aluminum oxide (Al2O3) thin films for high-performance OTFTs. Nanocluster-based Al2O3 films fabricated by highly energetic photochemical activation, which allows low-temperature processing, are compared to the conventional nitrate-based Al2O3 films. A wide array of spectroscopic and surface analyses show that ultralow-temperature photochemical activation (6 MV/cm). Using this dielectric layer, precisely aligned microrod-shaped 2,7-dioctyl[1]benzothieno [3,2-b][1] benzothiophene (C8-BTBT) single-crystal OTFTs were fabricated via solvent vapor annealing and photochemical patterning of the sacrificial layer
Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.1110Ysciescopu
- …