281 research outputs found

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Longevity in mice: is stress resistance a common factor?

    Get PDF
    A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, Ξ±-MUPA knockout, p66shc knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex interrelationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan

    The perception of healthcare quality of elderly in the city of Bari, South Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent decades in Italy, as in all the industrialized nations, the proportion of elderly subjects in the total population is constantly on the increase. However the increased life expectancy is not always paralleled by a true improvement in the quality of life.</p> <p>In this context, it is essential to analyze elderly real health needs and the responses to these needs, especially in terms of healthcare, that the territorial services are perceived to offer.</p> <p>Methods</p> <p>In the period from June to September 2006 we selected randomly one General Practitioner (GP) for each district of the Bari Municipal Area and, form each GP, we randomly chose 25 patients over 65 years old (YO). We conducted phone interviews using a standard data collection questionnaire and, for each of the recruited subjects, the GP filled a data collection sheet.</p> <p>Results</p> <p>Although the mean age (73.6 years) of the population under study was quite high, the general state of health was judged good both by the G P- and by their elderly patients (>75%).</p> <p>Notably, the great majority of elderly patients considered the healthcare they receive to be satisfactory (>60%): in particular, the GP was the true point of reference for this slice of the population for strictly medical problems as well as for advice. On the contrary, the patients attributed little value to social services, which were poorly known and scarcely used (8.5%). Public hospital facilities played a central role in second level healthcare in more than 30% of cases; private facilities covered by public health insurance were also very important. As possible solutions to the problem of loneliness, 36.6% of the patients declared that they approved of nursing homes.</p> <p>Conclusion</p> <p>Decision makers need to create services supporting the key role played by General Practitioners, who are well aware that their assistance is not sufficient to satisfy the health needs of the elderly.</p

    Rapid HIV testing program implementation: lessons from the emergency department

    Get PDF
    Background: The US Centers for Disease Control and Prevention (CDC) guidelines and the World Health Organization (WHO) both recommend HIV testing in health-care settings. However, neither organization provides prescriptive details regarding how these recommendations should be adapted into clinical practice in an emergency department. Methods: We have implemented an HIV-testing program in the ED of a major academic medical center within the scope of the Universal Screening for HIV Infection in the Emergency Room (USHER) Trialβ€”a randomized clinical trial evaluating the feasibility and cost-effectiveness of HIV screening in this setting. Results and conclusion: Drawing on our collective experiences in establishing programs domestically and internationally, we offer a practical framework of lessons learned so that others poised to embark on such HIV testing programs may benefit from our experiences

    Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    Get PDF
    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism

    Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

    Get PDF
    A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability

    Structural aspects and physiological consequences of APP/APLP trans-dimerization

    Get PDF
    The amyloid precursor protein (APP) is one of the key proteins in Alzheimer’s disease (AD), as it is the precursor of amyloid Ξ² (AΞ²) peptides accumulating in amyloid plaques. The processing of APP and the pathogenic features of especially AΞ² oligomers have been analyzed in detail. Remarkably, there is accumulating evidence from cell biological and structural studies suggesting that APP and its mammalian homologs, the amyloid precursor-like proteins (APLP1 and APLP2), participate under physiological conditions via trans-cellular dimerization in synaptogenesis. This offers the possibility that loss of synapses in AD might be partially explained by dysfunction of APP/APLPs cell adhesion properties. In this review, structural characteristics of APP trans-cellular interaction will be placed critically in context with its putative physiological functions focusing on cell adhesion and synaptogenesis

    A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice

    Get PDF
    Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kgβˆ’1 dayβˆ’1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR

    Does Reduced IGF-1R Signaling in Igf1r+/βˆ’ Mice Alter Aging?

    Get PDF
    Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/βˆ’) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/βˆ’ mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/βˆ’ mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/βˆ’ mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/βˆ’ mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/βˆ’ mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/βˆ’ and wild type mice was observed; and the mean lifespan of the Igf1r+/βˆ’ females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/βˆ’ and wild type mice. These data show that the Igf1r+/βˆ’ mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway
    • …
    corecore